For vertebrates, the adequate supply of polyunsaturated fatty acids (PUFA) by the diet, in particular ω3 long-chain PUFA, is considered essential for neural development, growth and reproduction. In contrast to aquatic ecosystems, ω3 long-chain PUFA apparently are not widely available in the terrestrial food chain. Their de novo synthesis requires the presence of Δ12 and ω3 fatty acid desaturase enzymes, which are absent in vertebrates but present, for example, in the nematode Caenorhabditis elegans (FAT-2 and FAT-1). This raises the question if soil-dwelling nematodes offer substantial supply of these valuable nutritional compounds in terrestrial food webs. BLAST searches in available nematode genomes revealed the existence of fat-2 like genes in almost all clade III-V species, but failed to identify orthologs in clade I-II nematodes. An additional RT-PCR screen across soil-dwelling nematode species identified six novel fat-2 like genes. Hints for the genetic basis of a ω3 (fat-1) desaturase activity was found only in selected clade IV-V species, but not in clades I to III nematodes. Fatty acid pattern analyses following a PUFA-free cultivation and enzymatic characterization of six selected fat-2 or fat-1 like desaturases in yeast confirmed the findings from the genetic approaches. Thus, in similar soil habitats, taxa exist that can synthesize ω3 long-chain PUFA (as Panagrolaimus, Mesorhabditis and Caenorhabditis) whereas others are unable to do so (Acrobeloides, Cephalobus and Oscheius). While these nematodes do not differ in trophic position or major diet, distinction in reproduction mode may have led to the observed variations in desaturase genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2019.05.001DOI Listing

Publication Analysis

Top Keywords

fatty acid
12
ω3 long-chain
12
long-chain pufa
12
terrestrial food
8
fat-2 fat-1
8
fat-2 genes
8
nematodes
5
ω3
5
presence absence?
4
absence? primary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!