Lipid synthesis and transport are coupled to regulate membrane lipid dynamics in the endoplasmic reticulum.

Biochim Biophys Acta Mol Cell Biol Lipids

Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA.

Published: January 2020

AI Article Synopsis

  • Structural lipids are primarily made in the endoplasmic reticulum (ER) and are transported to organelle membranes via vesicular trafficking or non-vesicular transfer.
  • The transport of lipids from the ER is regulated by the lipids themselves and other secondary lipid species, reflecting its importance in lipid synthesis control.
  • Understanding how cells manage lipid distribution and transport within the ER involves complex spatial arrangements and metabolic interactions, which are still being researched.

Article Abstract

Structural lipids are mostly synthesized in the endoplasmic reticulum (ER), from which they are actively transported to the membranes of other organelles. Lipids can leave the ER through vesicular trafficking or non-vesicular lipid transfer and, curiously, both processes can be regulated either by the transported lipid cargos themselves or by different secondary lipid species. For most structural lipids, transport out of the ER membrane is a key regulatory component controlling their synthesis. Distribution of the lipids between the two leaflets of the ER bilayer or between the ER and other membranes is also critical for maintaining the unique membrane properties of each cellular organelle. How cells integrate these processes within the ER depends on fine spatial segregation of the molecular components and intricate metabolic channeling, both of which we are only beginning to understand. This review will summarize some of these complex processes and attempt to identify the organizing principles that start to emerge. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858525PMC
http://dx.doi.org/10.1016/j.bbalip.2019.05.005DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
12
lipid dynamics
8
structural lipids
8
lipid
6
lipid synthesis
4
synthesis transport
4
transport coupled
4
coupled regulate
4
regulate membrane
4
membrane lipid
4

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Proteinuria and tubular cells: Plasticity and toxicity.

Acta Physiol (Oxf)

February 2025

Department of Medicine, Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.

Aim: Proteinuria is the most robust predictive factors for the progression of chronic kidney disease (CKD), and interventions targeting proteinuria reduction have shown to be the most effective nephroprotective treatments to date. While glomerular dysfunction is the primary source of proteinuria, its consequences extend beyond the glomerulus and have a profound impact on tubular epithelial cells. Indeed, proteinuria induces notable phenotypic changes in tubular epithelial cells and plays a crucial role in driving CKD progression.

View Article and Find Full Text PDF

Somatic and genetic mutations in glutathione peroxidases (GPxs), including GPx7 and GPx8, have been linked to intellectual disability, microcephaly, and various tumors. GPx7 and GPx8 evolved the latest among the GPx enzymes and are present in the endoplasmic reticulum. Although lacking a glutathione binding domain, GPx7 and GPx8 possess peroxidase activity that helps the body respond to cellular stress.

View Article and Find Full Text PDF

Background: Atherosclerotic calcification (AC) is a common feature of atherosclerotic cardiovascular disease. β-Hydroxybutyrate (BHB) has been identified as a molecule that influences cardiovascular disease. However, whether BHB can influence AC is still unknown.

View Article and Find Full Text PDF

Background: Maternal obesity detrimentally affects placental function and fetal development. Both alternate-day fasting (ADF) and time-restricted feeding (TRF) are dietary interventions that can improve metabolic health, yet their comparative effects on placental function and fetal development remain unexplored.

Objectives: This study aims to investigate the effects of ADF and TRF on placental function and fetal development during maternal consumption of a high-fat diet (HFD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!