Curvularia leaf spot (CuLS), caused by , is a devasting foliar disease in the maize-growing regions of China. Resistant varieties were widely planted in these regions in response to CuLS. However, over time, has gradually adapted to the selective pressure and, in recent years, the incidence of CuLS has increased. To assess the correlation between virulence and genetic diversity, a total of 111 isolates was collected from 15 maize-growing regions located in nine provinces in China. These isolates were evaluated for virulence on maize using nine differential hosts: Shen135, CN165, Mo17, Luyuan92, 78599, Ye478, B73, E28, and Huangzaosi. To evaluate the genetic diversity, 657 polymorphic amplified fragment length polymorphism markers were generated. Results showed that the isolates could be grouped into three pathotypes according to the phenotypic expression of the differential inbred lines. Isolates were clustered into two genetic diversity groups and further divided into subgroups. However, the correlation between virulence and genetic diversity grouping was low. Also, there was a low correlation observed between pathotype and geographic distribution. The ratio of mating type I to mating type II for all isolates was close to 3:4.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-10-18-1857-REDOI Listing

Publication Analysis

Top Keywords

genetic diversity
16
mating type
12
maize-growing regions
8
correlation virulence
8
virulence genetic
8
diversity
5
isolates
5
virulence
4
virulence molecular
4
molecular diversity
4

Similar Publications

Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance.

View Article and Find Full Text PDF

Estimating realized relatedness in free-ranging macaques by inferring identity-by-descent segments.

Proc Natl Acad Sci U S A

January 2025

Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig 04103, Germany.

Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of identical-by-descent DNA segments (IBD) yield the most precise relatedness estimates.

View Article and Find Full Text PDF

Epidemiology of gastrointestinal parasites of dogs in four districts of central Ethiopia: Prevalence and risk factors.

PLoS One

January 2025

Department of Pathology & Parasitology, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia.

From February 2022 to April 2023, a cross-sectional study on dog gastrointestinal parasites was conducted in Bishoftu, Dukem, Addis Ababa, and Sheno, Central Ethiopia, with the aim of estimating the prevalence and evaluating risk factors. A total of 701 faecal samples were collected and processed using floatation and McMaster techniques. In dogs that were investigated, the overall prevalence of gastrointestinal parasites was 53.

View Article and Find Full Text PDF

Discovery of non-retinoid compounds that suppress the pathogenic effects of misfolded rhodopsin in a mouse model of retinitis pigmentosa.

PLoS Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America.

Pathogenic mutations that cause rhodopsin misfolding lead to a spectrum of currently untreatable blinding diseases collectively termed retinitis pigmentosa. Small molecules to correct rhodopsin misfolding are therefore urgently needed. In this study, we utilized virtual screening to search for drug-like molecules that bind to the orthosteric site of rod opsin and improve its folding and trafficking.

View Article and Find Full Text PDF

Unlabelled: The ACTN3 R577X polymorphism determines the expression of alpha-actinin 3 protein in human muscle. The homozygous XX genotype fails to synthesize alpha-actinin 3 and is associated with lower muscle strength than the RR genotype. Neuromuscular diseases (NMD) generate an accelerated loss of muscle strength, and their relationship with the ACTN3 gene has not been established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!