Universal Scaling Law for Colloidal Diffusion in Complex Media.

Phys Rev Lett

Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Published: May 2019

Using video microscopy and simulations, we study the diffusion of probe particles in a wide range of complex backgrounds, both crystalline and disordered, in quasi-2D colloidal systems. The dimensionless diffusion coefficients D^{*} from different systems collapse to a single master curve when plotted as a function of the structural entropy of the backgrounds, confirming the universal relation between diffusion dynamics and the structure of the medium. A new scaling equation is proposed with consideration for the viscous friction from the solvent, which is absent in previous theoretical models. This new universal law quantitatively predicts the diffusion coefficients from different systems over several orders of magnitude of D^{*}, with a single common fitting parameter.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.122.178002DOI Listing

Publication Analysis

Top Keywords

diffusion coefficients
8
diffusion
5
universal scaling
4
scaling law
4
law colloidal
4
colloidal diffusion
4
diffusion complex
4
complex media
4
media video
4
video microscopy
4

Similar Publications

: A previous study investigated the in vitro release of methylene blue (MB), a widely used cationic dye in biomedical applications, from nanocellulose/nanoporous silicon (NC/nPSi) composites under conditions simulating body fluids. The results showed that MB release rates varied significantly with the nPSi concentration in the composite, highlighting its potential for controlled drug delivery. To further analyze the relationship between diffusion dynamics and the MB concentration, this study developed a finite element (FE) method to solve Fick's equations governing the drug delivery system.

View Article and Find Full Text PDF

Acoustic, Mechanical, and Thermal Characterization of Polyvinyl Acetate (PVA)-Based Wood Composites Reinforced with Beech and Oak Wood Fibers.

Polymers (Basel)

January 2025

Research Laboratory for Sustainable Development and Health, Department of Applied Physics, Faculty of Sciences and Technics, Cadi Ayyad University, Marrakesh 40000, Morocco.

Considering the growing need for developing ecological materials, this study investigates the acoustic, mechanical, and thermal properties of wood composites reinforced with beech or oak wood fibres. Scanning electron microscopy (SEM) revealed a complex network of interconnected pores within the composite materials, with varying pore sizes contributing to the material's overall properties. Acoustic characterization was conducted using a two-microphone impedance tube.

View Article and Find Full Text PDF

Diffusion weighted imaging (DWI) is used for monitoring purposes for lower-grade glioma (LGG). While the apparent diffusion coefficient (ADC) is clinically used, various DWI models have been developed to better understand the micro-environment. However, the validity of these models and how they relate to each other is currently unknown.

View Article and Find Full Text PDF

We aimed to describe the cardiopulmonary function during exercise and the health-related quality of life (HRQoL) in patients with a history of COVID-19 pneumonia, stratified by chest computed tomography (CT) findings at baseline. Among 77 consecutive patients with COVID-19 who were discharged from the Pulmonology Ward between March 2020 and April 2021, 28 (mean age 54.3 ± 8.

View Article and Find Full Text PDF

Determination of Osmotic Flow in Water Transport in an Illitic Clay.

Materials (Basel)

January 2025

Department of Physics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 94901 Nitra, Slovakia.

Experimental studies have shown that osmosis could be one of the mechanisms of water transport in porous materials that act, to a certain extent, as semipermeable membranes. In this paper, an experimental apparatus and the corresponding model to measure and determine the osmotic efficiency, , of bulk porous materials are described. Both the apparatus and model to interpret water transport in samples are modifications of those of Sherwood and Craster.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!