Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bamboo forests have an efficient carbon sequestration capacity and play an important role in responding to global climate change. However, the current estimation of bamboo carbon storage has some errors, leading to uncertainty in the spatiotemporal pattern of bamboo forest carbon storage. This study simulated aboveground carbon storage of Zhejiang Province, China, during 1984-2014 based on the combination of an improved BIOME-BGC (biogeochemical cycles) model and remote sensing data, with the accuracy being verified with forest resource inventory data. The spatio-temporal distribution and environmental factors of aboveground carbon storage were analyzed. The results showed that the simulated carbon storage was accurate, with average correlation coefficient (r), root mean square error (RMSE) and relative bias (rBIAS) being 0.75, 7.24 Mg C·hm and -2.57 Mg C·hm, respectively. Generally, the aboveground carbon storage of bamboo forests in the whole province tended to increase from 1984 to 2014, the range of aboveground carbon density was 13.10-17.14 Mg C·hm, and that of the total aboveground carbon storage was between 9.94-17.19 Tg C. The high aboveground carbon storage of bamboo was mainly distributed in developed bamboo industry areas, such as Anji, Lin'an, and Longyou. The change of aboveground carbon storage in bamboo forest was significantly correlated with temperature, precipitation, radiation, CO concentration and nitrogen deposition, with higher partial correlation coefficients between precipitation and temperature and carbon storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201905.035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!