Alternative Splicing in the Regulation of Plant-Microbe Interactions.

Plant Cell Physiol

Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Universite Paris-Saclay, Orsay Cedex, France.

Published: September 2019

As sessile organisms, plants are continuously exposed to a wide range of biotic interactions. While some biotic interactions are beneficial or even essential for the plant (e.g. rhizobia and mycorrhiza), others such as pathogens are detrimental and require fast adaptation. Plants partially achieve this growth and developmental plasticity by modulating the repertoire of genes they express. In the past few years, high-throughput transcriptome sequencing have revealed that, in addition to transcriptional control of gene expression, post-transcriptional processes, notably alternative splicing (AS), emerged as a key mechanism for gene regulation during plant adaptation to the environment. AS not only can increase proteome diversity by generating multiple transcripts from a single gene but also can reduce gene expression by yielding isoforms degraded by mechanisms such as nonsense-mediated mRNA decay. In this review, we will summarize recent discoveries detailing the contribution of AS to the regulation of plant-microbe interactions, with an emphasis on the modulation of immunity receptor function and other components of the signaling pathways that deal with pathogen responses. We will also discuss emerging evidences that AS could contribute to dynamic reprogramming of the plant transcriptome during beneficial interactions, such as the legume-symbiotic interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcz086DOI Listing

Publication Analysis

Top Keywords

alternative splicing
8
regulation plant-microbe
8
plant-microbe interactions
8
biotic interactions
8
gene expression
8
interactions
5
splicing regulation
4
interactions sessile
4
sessile organisms
4
organisms plants
4

Similar Publications

Nuclear Condensates of WW Domain-Containing Adaptor With Coiled-Coil Regulate Mitophagy via Alternative Splicing.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Biomolecular condensates segregate nuclei into discrete regions, facilitating the execution of distinct biological functions. Here, it is identified that the WW domain containing adaptor with coiled-coil (WAC) is localized to nuclear speckles via its WW domain and plays a pivotal role in regulating alternative splicing through the formation of biomolecular condensates via its C-terminal coiled-coil (CC) domain. WAC acts as a scaffold protein and facilitates the integration of RNA-binding motif 12 (RBM12) into nuclear speckles, where RBM12 potentially interacts with the spliceosomal U5 small nuclear ribonucleoprotein (snRNP).

View Article and Find Full Text PDF

is a well-known plant used in oriental medicine plant, and is also serves as the primary traditional source of plant red dyestuffs. With the current depletion of natural resources of , it is critical to conduct cultivation studies on the . Here, we report on the dynamic growth characteristics and secondary metabolite accumulation of cultivated , as well as the discovery of important genes involved in anthraquinone biosynthesis.

View Article and Find Full Text PDF

Purpose Of Review: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating heritable channelopathy that can lead to sudden cardiac death in children and young adults. This review aims to explore genetics, the cardiac and extracardiac manifestations of mutations associated with CPVT, and the challenges involved with managing phenotypically variable variants.

Recent Findings: The understanding of the genetics and mechanisms of CPVT continues to grow with recent discoveries including alternative splicing of cardiac TRDN and calmodulin gene variants.

View Article and Find Full Text PDF

Downregulation of hnRNPA1 inhibits hepatocellular carcinoma cell progression by modulating alternative splicing of ZNF207 exon 9.

Front Oncol

January 2025

Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Hunan Normal University, Changsha, China.

Introduction: Hepatocellular carcinoma (HCC) is the most prevalent liver cancer and a leading cause of cancer-related deaths worldwide. Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) plays a critical role in RNA metabolism, including alternative splicing, which is linked to cancer progression. Our study investigated the role of in HCC and its potential as a therapeutic target.

View Article and Find Full Text PDF

Modulation of DAPK1 expression by its alternative splice variant DAPK1-215 in cancer.

J Transl Med

January 2025

Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.

Background: Death-Associated Protein Kinase 1 (DAPK1) family members are calcium/calmodulin-regulated serine/threonine kinases implicated in cell death, normal development, and human diseases. However, the regulation of DAPK1 expression in cancer remains unclear.

Methods: We examined the expression and functional impact of a DAPK1 splice variant, DAPK1-215, in multiple cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!