Captivity causes taxonomic and functional convergence of gut microbial communities in bats.

PeerJ

Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China.

Published: April 2019

Background: Diet plays a crucial role in sculpting microbial communities. Similar diets appear to drive convergence of gut microbial communities between host species. Captivity usually provides an identical diet and environment to different animal species that normally have similar diets. Whether different species' microbial gut communities can be homogenized by a uniform diet in captivity remains unclear.

Methods: In this study, we compared gut microbial communities of three insectivorous bat species (, , and ) in captivity and in the wild using 16S rDNA sequencing. In captivity, and were fed yellow mealworms, while was fed giant mealworms to rule out the impact of an identical environment on the species' gut microbial communities.

Results: We found that the microbial communities of the bat species we studied clustered by species in the wild, while the microbial communities of and in captivity clustered together. All microbial functions found in captive were shared by . Moreover, the relative abundances of all metabolism related KEGG pathways did not significantly differ between captive and ; however, the relative abundance of "Glycan Biosynthesis and Metabolism" differed significantly between wild and .

Conclusion: Our results suggest that consuming identical diets while in captivity tends to homogenize the gut microbial communities among bat species. This study further highlights the importance of diet in shaping animal gut microbiotas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499062PMC
http://dx.doi.org/10.7717/peerj.6844DOI Listing

Publication Analysis

Top Keywords

microbial communities
28
gut microbial
20
bat species
12
microbial
10
convergence gut
8
communities
8
species captivity
8
communities bat
8
captivity
7
gut
7

Similar Publications

Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives.

Gut Microbes

December 2025

Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.

Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential.

View Article and Find Full Text PDF

Introduction: Colorectal cancer (CRC) is the second most common cause of cancer-related deaths globally. The gut microbiota, along with adenomatous polyps (AP), has emerged as a plausible contributor to CRC progression. This study aimed to scrutinize the impact of the FadA antigen derived from Fusobacterium nucleatum on the expression levels of the ANXA2 ceRNA network and assess its relevance to CRC advancement.

View Article and Find Full Text PDF

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications.

World J Microbiol Biotechnol

January 2025

Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.

Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis.

View Article and Find Full Text PDF

Comparative Analysis of the Probiotic Features of Lysinibacillus and Enterobacter Strains Isolated from Gut Tract of Triploid Cyprinid Fish.

Curr Microbiol

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.

Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!