To investigate endoplasmic reticulum (ER) stress reactions in spinal cord injury rats by evaluating the expression of the glucose-regulated protein 78 (GRP78), C/EBP homologous transcription factor protein (CHOP), X-box binding protein 1 (XBP1), Eif-2α and Bad. SCI models were established using adult female mice. After SCI, the expression of endoplasmic reticulum stress-induced apoptosis proteins were examined in the mice at specific time points using immunohistochemistry and western blot. The results of immunohistochemistry showed that in spinal cord gray matter, Chop, Grp78, XBP1, Eif-2α and Bad were specifically detected in the cytoplasm of the cell. Compare with the SCI group, there was little expression in normal group and sham group. The expression of ER stress-induced apoptosis proteins were significantly increased after spinal cord injury, and the absolute expression was higher than normal group (P < 0.05). Western-Blot results showed that compare with the SCI group, there were little expression of ER stress-induced apoptosis proteins in normal group and sham group. The expression of ER stress-induced apoptosis proteins were significantly increased after spinal cord injury, and the absolute expression was higher than normal group (P < 0.05). These results suggest that some ER stress-induced apoptosis proteins, such as Chop, Grp78, XBP1, Eif-2α and Bad, were activated after spinal cord injury, but the precise regulatory mechanisms remain unclear. In the future, understanding of the precise mechanism of ER stress-mediated apoptosis in SCI may lead to the development of novel treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511803 | PMC |
Mol Biol Rep
January 2025
Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFMult Scler
January 2025
Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Spinal cord (SC) atrophy is a key imaging biomarker of progressive multiple sclerosis (MS). Progressive MS is more common in men and postmenopausal women.
Objective: Investigate the impact of sex and menopause on SC measurements in persons with MS (pwMS).
Spinal Cord
January 2025
Rehabilitation Studies, Faculty of Medicine and Health, The University of Sydney, The Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia.
Study Design: Narrative review OBJECTIVES: Sir Ludwig Guttmann realised spinal cord injury (SCI) rehabilitation should incorporate more than a biomedical approach if SCI patients were to adjust to their injury and achieve productive social re-integration. He introduced components into rehabilitation he believed would assist his patients build physical strength as well as psychological resilience that would help them re-engage with their communities. We pay tribute to Sir Ludwig by presenting research that has focussed on psychosocial factors that contribute to adjustment dynamics after SCI.
View Article and Find Full Text PDFJ Neurosci
January 2025
Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!