Severity of Swiss needle cast in young and mature Douglas-fir forests in western Oregon, USA.

For Ecol Manage

U.S. Environmental Protection Agency, Western Ecology Division, Corvallis, OR, USA.

Published: January 2019

Swiss needle cast (SNC), caused by , is an important foliage disease of Douglas-fir () forests of the Pacific Northwest. The fungus lives endophytically within the foliage, until forming reproductive structures (pseudothecia) that plug stomates and cause carbon starvation. When pseudothecia appear on one- and two-year-old foliage, significant needle abscission can occur, which reduces productivity of the tree. While there is considerable evidence of SNC disease in coastal Douglas-fir plantations, the severity of SNC in mature and old-growth forests is poorly understood. We compared tree crowns of mature and old-growth conifer forests and nearby young forests at three locations in the Oregon Coast Range and four locations in the western Cascade Range of Oregon. We assessed disease severity for on two-year-old foliage, incidence by presence of on all foliage, foliage retention for the first four years, and foliar nitrogen of one-year-old foliage. We also compared leaf wetness at three heights in one mature and one young tree at five of the seven sites. Disease severity was greater in young forests than mature forests at all sites except for high elevation Cascade Range areas. Incidence of disease was highest for two-year-old needles in young trees and 3-5 year-old needles in mature trees, except for one coastal site. Retention of 1-4 year-old needle cohorts differed between young and mature trees, and mature trees had much larger complements of > four-year-old needles. Total foliar nitrogen (TN) concentration did not differ in needles of young and mature trees, but at some locations total N differed between canopy positions. Leaf wetness differences were not consistent between young and mature tree crowns. However, at one study site in the core epidemic area, the younger stand had longer periods of wetness in the upper crowns than a nearby old stand. Leaf wetness and foliar N were hypothesized to play a role in SNC disease severity, but they do not explain differences in adjacent young and mature trees. Although the fungus is present in old and young trees, the likelihood of disease expression and lower foliage retention appears to be greater in younger plantation trees than mature and older trees in western Oregon Douglas-fir forests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516500PMC
http://dx.doi.org/10.1016/j.foreco.2019.03.063DOI Listing

Publication Analysis

Top Keywords

young mature
20
mature trees
20
mature
12
douglas-fir forests
12
disease severity
12
leaf wetness
12
young
10
trees
9
swiss needle
8
needle cast
8

Similar Publications

Talent Identification: Time to Move Forward on Estimation of Potentials? Proposed Explanations and Promising Methods.

Sports Med

January 2025

IRMES-UPR 7329, Institut de Recherche Médicale et d'Épidémiologie du Sport, Université Paris Cité, 11 Avenue du Tremblay, 75012, Paris, France.

The scientific literature on talent identification is extensive, with significant advancements made over the past 30 years. However, as with any field, the translation of research into practice and its impact on the field have been slower than anticipated. Indeed, recent findings highlight a pervasive relative age effect, the effects of maturation being often overlooked, disparate populations between young and senior performers, and a necessity to embrace a holistic approach.

View Article and Find Full Text PDF

Background: Hip dysplasia diagnosed after skeletal maturity is distinct from developmental dysplasia of the hip (DDH) in infants and young children. While the natural history of DDH in infants and young children is well-established, the association between hip dysplasia diagnosed after skeletal maturity and osteoarthritis is less clear. This narrative review summarizes existing literature assessing characteristics of hip dysplasia diagnosed after skeletal maturity associated with progression to osteoarthritis.

View Article and Find Full Text PDF

Sesame (Sesamum indicum L., 2n = 2× = 26) from the Pedaliaceae family is primarily grown for its high oil content, rich in unsaturated fatty acids like linoleic acid (LA) and alpha-linolenic acid (ALA). However, the molecular mechanisms of sesame oil accumulation remain poorly understood.

View Article and Find Full Text PDF

Synaptic vesicle (SV) trafficking toward the plasma membrane (PM) and subsequent SV maturation are essential for neurotransmitter release. These processes, including SV docking and priming, are co-ordinated by various proteins, such as SNAREs, Munc13 and synaptotagmin (Syt), which connect (tether) the SV to the PM. Here, we investigated how tethers of varying lengths mediate SV docking using a simplified mathematical model.

View Article and Find Full Text PDF

An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy.

Adv Sci (Weinh)

January 2025

Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.

Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!