AI Article Synopsis

Article Abstract

Here, a process is introduced for forming dual stage thiol-Michael/acrylate hybrid networks photocured by two different wavelengths, demonstrating its use in nanoimprint lithography (NIL) and shape memory materials. Initiated with a visible light sensitive photobase and a UV-sensitive radical initiator, thiol-Michael-acrylate hybrid polymerizations were programmed to proceed sequentially and orthogonally, with base-catalyzed thiol-Michael photopolymerization as the first stage and radical mediated acrylate photopolymerization as the second stage. By regulating the photopolymerization formulations, i.e. thiol-to-acrylate ratios, initiator loadings and irradiation conditions, a series of materials with highly tunable mechanical performance was achieved, with ultimate T values ranging from 23 to 70 °C. With a photopatternable first stage and a readily reconfigurable second stage, its implementation in nanoimprint lithography (NIL) enabled surface features on the scale of 10 nm to be formed on a photopatterned substrate. Additionally, the dual stage polymer results in a relatively homogenous polymer network with a narrow glass transition temperature (Tg), which enables rapid response in applications as shape memory materials, with shape-fixity values above 95% and shaperecovery values above 99%. With its unique photocuring process and programmable mechanical properties, the two color light controlled photopolymerization can be exploited as a useful tool in a wide range of materials science applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519971PMC
http://dx.doi.org/10.1016/j.polymer.2018.09.032DOI Listing

Publication Analysis

Top Keywords

shape memory
12
memory materials
12
nanoimprint lithography
12
dual stage
8
lithography nil
8
second stage
8
stage
6
materials
5
implementation distinct
4
distinct wavelengths
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!