A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrically Small Dipole Antenna Probe for Quasistatic Electric Field Measurements in Transcranial Magnetic Stimulation. | LitMetric

The present paper designs, constructs, and tests an electrically small dipole antenna probe for the measurement of electric field distributions with the ultimate purpose to directly measure electric fields induced by a transcranial magnetic stimulation (TMS) coil. Its unique features include applicability to measurements in both air and conducting medium, high spatial resolution, large frequency band from 100 Hz to 300 KHz, efficient feedline isolation via a printed Dyson balun, and accurate mitigation of noise. Prior work in this area is thoroughly reviewed. The proposed probe design is realized in hardware; implementation details and design tradeoffs are described. Test data are presented for the measurement of a constant wave capacitor electric field, demonstrating the probe's ability to properly measure electric fields caused by a charge distribution. Test data are also presented for the measurement of a constant wave solenoidal electric field, demonstrating the probe's ability to measure electric fields caused by Faraday's law of induction. Those are the primary fields for the transcranial magnetic stimulation. Further steps necessary for the application of this probe as an instrument for TMS coil design are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519735PMC
http://dx.doi.org/10.1109/TMAG.2018.2875882DOI Listing

Publication Analysis

Top Keywords

electric field
16
transcranial magnetic
12
magnetic stimulation
12
measure electric
12
electric fields
12
electrically small
8
small dipole
8
dipole antenna
8
antenna probe
8
tms coil
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!