A simulation study was conducted to investigate the model size effect when confirmatory factor analysis (CFA) models include many ordinal items. CFA models including between 15 and 120 ordinal items were analyzed with mean- and variance-adjusted weighted least squares to determine how varying sample size, number of ordered categories, and misspecification affect parameter estimates, standard errors of parameter estimates, and selected fit indices. As the number of items increased, the number of admissible solutions and accuracy of parameter estimates improved, even when models were misspecified. Also, standard errors of parameter estimates were closer to empirical standard deviation values as the number of items increased. When evaluating goodness-of-fit for ordinal CFA with many observed indicators, researchers should be cautious in interpreting the root mean square error of approximation, as this value appeared overly optimistic under misspecified conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506988PMC
http://dx.doi.org/10.1177/0013164418818242DOI Listing

Publication Analysis

Top Keywords

parameter estimates
16
factor analysis
8
cfa models
8
ordinal items
8
standard errors
8
errors parameter
8
number items
8
items increased
8
fitting large
4
large factor
4

Similar Publications

Online vibration state identification of multi-rigid-body system based on self-healing model.

Sci Rep

December 2024

School of Mechanical Engineering, Liaoning Engineering Vocational College, Tieling, 112008, Liaoning, People's Republic of China.

The paper proposes a multi-rigid-body system state identification method based on self-healing model in order to improve the accuracy and reliability of CNC machine tools. Firstly, considering the influence of the joint surface, the Lagrange method is used to establish the mechanical model of the multi-rigid-body system. We input acceleration information and use the second-order modulation function to complete the online real-time identification of the joint surface parameters, thereby establishing the self-healing mechanical model of the multi-rigid-body system.

View Article and Find Full Text PDF

This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.

View Article and Find Full Text PDF

While bacille-calmette-guerin (BCG) vaccination is one of the recommended strategies for preventing tuberculosis (TB), its coverage is low in several countries, including Ethiopia. This study investigated the spatial co-distribution and drivers of TB prevalence and low BCG coverage in Ethiopia. This ecological study was conducted using data from a national TB prevalence survey and the Ethiopian demographic and health survey (EDHS) to map the spatial co-distribution of BCG vaccination coverage and TB prevalence.

View Article and Find Full Text PDF

The northern Gulf of Mexico (nGoM) receives water from over 50 rivers which are highly influenced by humans and include the largest river in the United States, the Mississippi River. To support large-scale data-driven research centered on the dynamic river-ocean system in the region, this study consolidated hydrogeochemical river and ocean data from across the nGoM. In particular, we harmonized 35 chemical solute parameters from 54 rivers and incorporated river discharge data to derive daily solute concentration and flux estimates throughout the nGoM.

View Article and Find Full Text PDF

This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!