The phage surface display technology is a useful tool to screen and to extend the spectrum of metal-binding protein structures provided by nature. The directed evolution approach allows identifying specific peptide ligands for metals that are less abundant in the biosphere. Such peptides are attractive molecules in resource technology. For example, gallium-binding peptides could be applied to recover gallium from low concentrated industrial wastewater. In this study, we investigated the affinity and selectivity of five bacteriophage clones displaying different gallium-binding peptides towards gallium and arsenic in independent biosorption experiments. The displayed peptides were highly selective towards Ga whereby long linear peptides showed a lower affinity and specificity than those with a more rigid structure. Cysteine scanning was performed to determine the relationship between secondary peptide structure and gallium sorption. By site-directed mutagenesis, the amino acids of a preselected peptide sequence are systematically replaced by cysteines. The resulting disulphide bridge considerably reduces the flexibility of linear peptides. Subsequent biosorption experiments carried out with the mutants obtained from cysteine scanning demonstrated, depending on the position of the cysteines in the peptide, either a considerable increase in the affinity of gallium compared to arsenic or an increase in the affinity for arsenic compared to gallium. This study shows the impressive effect on peptide-target interaction based on peptide structure and amino acid position and composition via the newly established systematic cysteine scanning approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630928PMC
http://dx.doi.org/10.3390/biomimetics4020035DOI Listing

Publication Analysis

Top Keywords

cysteine scanning
12
directed evolution
8
gallium-binding peptides
8
biosorption experiments
8
linear peptides
8
peptide structure
8
increase affinity
8
peptides
6
peptide
5
gallium
5

Similar Publications

Cys44 of SARS-CoV-2 3CL affects its catalytic activity.

Int J Biol Macromol

January 2025

Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 21, 80126 Napoli, Italy; CEINGE Advanced Biotechnologies s.c.a r.l. "Franco Salvatore", Via Gaetano Salvatore 486, 80131 Napoli, Italy. Electronic address:

SARS-CoV-2 encodes a 3C-like protease (3CL) that is essential for viral replication. This cysteine protease cleaves viral polyproteins to release functional nonstructural proteins, making it a prime target for antiviral drug development. We investigated the inhibitory effects of halicin, a known c-Jun N-terminal kinase inhibitor, on 3CL.

View Article and Find Full Text PDF

Improved toughening attributes of coix seed oil high internal phase Pickering emulsion gel via the carrageenan and super-deamidated wheat gluten microparticles interfacial network fotified by the acid-heat induction strategy.

Int J Biol Macromol

January 2025

Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, China. Electronic address:

The toughening coix seed oil (CSO) high internal phase Pickering emulsion (CSO-HIPES) and gel (CSO-HIPESG) comprised of carrageenan (CR)/super-deamidated-gluten (SDG) micro-particles (CR/SDG) were investigated via acid-heat induction. Results showed polysaccharide natural deep eutectic solvent (P-NADES) by citric acid-glucose-carrageenan ((CGCR), molar ratio at 1:1:0.035) was the crucial for the preparation of SDG (deamidation degree, 99.

View Article and Find Full Text PDF

Design, synthesis and activity evaluation of reduction-responsive anticancer peptide temporin-1CEa drug conjugates.

Bioorg Chem

December 2024

Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China. Electronic address:

Membranes that destroy anticancer peptides can bind to negatively charged cancer cell membranes through electrostatic interactions, destroying their functions and leading to cancer cell necrosis. Temporin-1CEa, obtained from the skin secretions of the Chinese frog Rana chensinensis, is an anticancer peptide with 17 amino acid residues that exhibits concentration-dependent cytotoxicity against a variety of cancer cell lines, although it has no obvious cytotoxicity to normal HUVECs. In this work, we designed and synthesized 12 derivative peptides through double-cysteine scanning of temporin-1CEa-truncated peptides.

View Article and Find Full Text PDF

In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine-silver sol (CSS) and iodate anions (IO) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex of modern physico-chemical methods of analysis, including viscosimetry, UV spectroscopy, dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. In the dark phase, the formation of weak snot-like gels takes place in a quite narrow IO ion concentration range.

View Article and Find Full Text PDF

Probing the Protein Kinases' Cysteinome by Covalent Fragments.

Angew Chem Int Ed Engl

December 2024

Goethe-Universitat Frankfurt am Main Fachbereich 14 Biochemie Chemie und Pharmazie, Institute for Pharmaceutical Chemistry, GERMANY.

Protein kinases are important drug targets, yet specific inhibitors have been developed for only a fraction of the more than 500 human kinases. A major challenge in designing inhibitors for highly related kinases is selectivity. Unlike their non-covalent counterparts, covalent inhibitors offer the advantage of selectively targeting structurally similar kinases by modifying specific protein side chains, particularly non-conserved cysteines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!