YbeA from E. coli is a trefoil-knotted SpoU-TrmD (SPOUT) RNA methyltransferase. While its knotted motif plays a key functional role, it is unclear how the knotted topology emerged from evolution. Here, we reverse-engineered an unknotted circular permutant (CP) of YbeA by introducing a new opening at the knotting loop. The resulting CP folded into an unexpected domain-swapped dimer. Untying the knotted loop abrogated its function, perturbed its folding stability and kinetics, and induced allosteric dynamic changes. We speculated that the knotted loop of YbeA is under tension to keep the cofactor in a high-energy configuration while keeping the threading C-terminal helix being knotted. Circular permutation released the mechanical strain thereby allowing the spring-loaded threading helix to flip, to relax, and to form a domain-swapped dimer. Being knotted may be the consequence of selection pressure for the unique structure-function relationship of the SPOUT superfamily that exists in all kingdoms of life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.str.2019.04.004 | DOI Listing |
Commun Biol
December 2024
Manufacturing, CSIRO, 343 Royal Parade, Parkville, VIC, 3052, Australia.
The antibiotic 2-nitroimidazole (2NI) or azomycin, used for treating drug-resistant tuberculosis and imaging tumor hypoxia, requires activation by bacterial nitroreductases for its antibiotic and cytotoxic effect. Mycobacterium sp. JS330 produces 2-nitroimidazole nitrohydrolase (NnhA) that circumvents 2NI activation, conferring 2NI resistance by hydrolysing it to nitrite and imidazol-2-one (IM2O) instead.
View Article and Find Full Text PDFCell
December 2024
Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland. Electronic address:
Broad-complex, tramtrack, and bric-à-brac domain (BTB) and CNC homolog 1 (BACH1) is a key regulator of the cellular oxidative stress response and an oncogene that undergoes tight post-translational control by two distinct F-box ubiquitin ligases, SCF and SCF. However, how both ligases recognize BACH1 under oxidative stress is unclear. In our study, we elucidate the mechanism by which FBXO22 recognizes a quaternary degron in a domain-swapped β-sheet of the BACH1 BTB dimer.
View Article and Find Full Text PDFJ Med Chem
December 2024
Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
Development of different platforms would be useful for designing functional antibodies to improve the efficiency of antibody-based drugs. Three-dimensional domain swapping (3D-DS) may occur in the variable region of antibody light chain #4C214A, and a pair of domain-swapped dimers may interact with each other to form a tetramer. In this study, to stabilize the 3D-DS dimer structure in #4C214A, Val2 in strand A (swapping region) and Thr97 in strand G were replaced with Cys residues, generating #4 V2C/T97C/C214A with a Cys2-Cys97 disulfide bond that cross-links strands A and G of different protomers.
View Article and Find Full Text PDFStructure
January 2025
Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia; Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia. Electronic address:
Biochem Biophys Res Commun
November 2024
MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, PR China. Electronic address:
Cullin-RING E3 ubiquitin ligases (CRLs) constitute the largest family of ubiquitin ligase and play important roles in regulation of proteostasis. Here we presented the cryo-EM structure of CRL1, a member of Cullin-1 E3 ligase. CRL1 adopts a homodimer architecture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!