AI Article Synopsis

  • The study investigates the genetic basis of important traits in natural hybrids of two Populus species, focusing on how these traits contribute to reproductive barriers when different populations hybridize.
  • Researchers conducted a genome-wide association study (GWAS) on 472 seedlings from a hybrid zone, examining 46 traits and using advanced mapping techniques to uncover genetic influences.
  • Three classes of genomic architectures were identified, revealing variations in genetic associations and heritability, with potential candidate genes linked to important traits like phenylpropanoid biosynthesis, highlighting the implications for understanding hybrid performance and fitness.

Article Abstract

The genomic architecture of functionally important traits is key to understanding the maintenance of reproductive barriers and trait differences when divergent populations or species hybridize. We conducted a genome-wide association study (GWAS) to study trait architecture in natural hybrids of two ecologically divergent Populus species. We genotyped 472 seedlings from a natural hybrid zone of Populus alba and Populus tremula for genome-wide markers from reduced representation sequencing, phenotyped the plants in common gardens for 46 phytochemical (phenylpropanoid), morphological and growth traits, and used a Bayesian polygenic model for mapping. We detected three classes of genomic architectures: traits with finite, detectable associations of genetic loci with phenotypic variation in addition to highly polygenic heritability; traits with indications for polygenic heritability only; and traits with no detectable heritability. For the first class, we identified genome regions with plausible candidate genes for phenylpropanoid biosynthesis or its regulation, including MYB transcription factors and glycosyl transferases. GWAS in natural, recombinant hybrids represent a promising step towards resolving the genomic architecture of phenotypic traits in long-lived species. This facilitates the fine-mapping and subsequent functional characterization of genes and networks causing differences in hybrid performance and fitness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771622PMC
http://dx.doi.org/10.1111/nph.15930DOI Listing

Publication Analysis

Top Keywords

classes genomic
8
genomic architectures
8
morphological growth
8
growth traits
8
genomic architecture
8
polygenic heritability
8
heritability traits
8
traits
7
admixture mapping
4
mapping interspecific
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!