Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We examined the ultrastructure of the anterior cruciate ligament and assessed age-related changes by comparing the ligaments of young and old monkeys. Ultrathin sections of the anterior cruciate ligament were observed by transmission electron microscopy. The three-dimensional architecture of collagen fibers in the ligament was examined by scanning electron microscopy after tissue specimens were treated with 2 N NaOH to digest the extracellular matrix. At the surface layer of the cruciate ligament in young monkeys, fusiform-shaped fibroblasts actively produced collagen fibrils. The ligament consisted of parallel bundles of dense collagen fibrils of approximately 200 nm in diameter. Collagen fibrils appeared to run linearly. Ligament fibrocytes in the deep layer had a stellate form. Ligament fibrocytes decreased in number and showed marked atrophy in old age. Collagen fibrils had a looser configuration in older monkeys. Despite atrophy of fibroblasts in the deep layer of the anterior cruciate ligament, the area with atrophic fibroblasts in the ligament expands with age, which can likely cause deterioration of and a reduction in collagen fibers. This information can be applied in studies on the cause of the low repair ability of and aging-related changes in the anterior cruciate ligament in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00795-019-00224-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!