The nucleus basalis of Meynert (nbM) was first described at the end of the 19th century and named after its discoverer, Theodor Meynert. The nbM contains a large population of cholinergic neurons that project their axons to the entire cortical mantle, the olfactory tubercle, and the amygdala. It has been functionally associated with the control of attention and maintenance of arousal, both key functions for appropriate learning and memory formation. This structure is well-conserved across vertebrates, although its degree of organization varies between species. Since early in the investigation of its functional and pathological significance, its degeneration has been linked to various major neuropsychiatric disorders. For instance, Lewy bodies, a hallmark in the diagnosis of Parkinson's disease, were originally described in the nbM. Since then, its involvement in other Lewy body and dementia-related disorders has been recognized. In the context of recent positive outcomes following nbM deep brain stimulation in subjects with dementia-associated disorders, we review the literature from an historical perspective focusing on how the nbM came into focus as a promising therapeutic option for patients with Alzheimer's disease. Moreover, we will discuss what is needed to further develop and widely implement this approach as well as examine novel medical indications for which nbM deep brain stimulation may prove beneficial.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-180133 | DOI Listing |
Neurosurg Rev
January 2025
Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK.
Minimally invasive parafascicular surgery (MIPS) with the use of tubular retractors achieve a safe resection in deep seated tumours. Diffusion changes noted on postoperative imaging; the significance and clinical correlation of this remains poorly understood. Single centre retrospective cohort study of neuro-oncology patients undergoing MIPS.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.
Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.
Microsc Res Tech
January 2025
AIDA Lab. College of Computer and Information Sciences (CCIS), Prince Sultan University, Riyadh, Saudi Arabia.
The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland.
Background: Effects of subthalamic nucleus deep brain stimulation (STN-DBS) on neuropsychiatric symptoms of Parkinson's disease (PD) remain debated. Sensor technology might help to objectively assess behavioural changes after STN-DBS.
Case Presentation: 5 PD patients were assessed 1 before and 5 months after STN-DBS with the Movement Disorders Society Unified Parkinson's Disease Rating Scale part III in the medication ON (plus postoperatively stimulation ON) condition, the Montreal Cognitive Assessment, the Questionnaire for Impulsive-Compulsive Behaviors in Parkinson's Disease Rating Scale present version, the Hospital Anxiety and Depression Scale and the Starkstein Apathy Scale.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!