Specific cell capture and noninvasive release via moderate electrochemical oxidation of boronic ester linkage.

Biosens Bioelectron

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China. Electronic address:

Published: August 2019

Early diagnosis and therapy of cancer metastasis are of great importance for disease outcome. Circulating tumor cells (CTCs) offer the ability for noninvasive tumor profiling in real time. However, simply capturing and counting tumor cells are inadequate to provide valuable information about tumor. Efficiently releasing the captured cells is necessary for the downstream characterization. Herein, we describe a mild electrochemical strategy to effectively isolate CTCs from the bloodstream and rapidly release the captured cells in 2 min for downstream molecular characterization, as realized on a conductive poly(aminophenylboronic acid) derivatized electrode. The boronic ester linkage between dopamine (DA) and boronic acids-functionalized electrode is stable, and only upon the application of a weak potential perturbation does the boronic ester dissociate and release cells without compromising cell viability. This platform is reusable after acid treatment and has the potential to be the next-generation platform for cell capture and release, realizing the clinical value of CTCs as biomarkers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2019.111316DOI Listing

Publication Analysis

Top Keywords

boronic ester
12
cell capture
8
ester linkage
8
tumor cells
8
captured cells
8
cells
5
specific cell
4
capture noninvasive
4
release
4
noninvasive release
4

Similar Publications

Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer.

Acta Pharm Sin B

December 2024

Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.

Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment.

View Article and Find Full Text PDF

Synthesis, structures, and optical properties of N-heterocycle and amino acid ester-coordinated BH.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang, Henan 453007, China.

A series of N-Het·BH and AAE·BH complexes were prepared in moderate to high yields and the single-crystal structures of products 3, 31, 34, and 59 were determined. The N-Het·BH and AAE·BH complexes possess high stability, endowing these products with potential applications in luminescent and boron-containing drugs. The optical properties of the representative products have been preliminarily studied.

View Article and Find Full Text PDF

Synergistic Boronic Acid and Photoredox Catalysis: Synthesis of C-Branched Saccharides via Selective Alkylation of Unprotected Saccharides.

Org Lett

January 2025

Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.

Here we present a regio- and stereoselective alkylation approach for unprotected saccharides using synergistic boronic acid and photoredox catalysis. Targeting the equatorial C-H bond of the -1,2-diol motif, this method employs MeB(OH) as a catalyst. Mechanistic investigations indicate that the formation of a tetracoordinate boron species, resulting from the interaction between the cyclic boronic diol ester and a free hydroxyl group in the saccharide, is critical to this transformation.

View Article and Find Full Text PDF

Fluorescent distinguishing flavonoid glycosides against aglycones based on the selective recognization of boric acid-functional Eu(III)-organic framework.

Talanta

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. Electronic address:

Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time.

View Article and Find Full Text PDF

Silk-engineered bioactive nanoparticles for targeted alleviation of acute inflammatory disease via macrophage reprogramming.

J Nanobiotechnology

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China.

Significant progress has been made in the development of potential therapies for diseases associated with inflammation and oxidative stress. Nevertheless, the availability of effective clinical treatments remains limited. Herein, we introduce a novel silk-based bioactive material, TPSF, developed by sequentially conjugating Tempol and phenylboronic acid pinacol ester to silk fibroin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!