The efficiency of elimination of organic UV filters by ozonation and UV/HO processes was assessed and predicted in simulated treatments of sewage-impaired drinking water and wastewater effluent in bench-scale experiments. Second-order rate constants (k) for the reactions of the eight UV filters with ozone and OH were determined by quantum chemical calculations and competition kinetics methods, respectively. The UV filters containing phenolic (ethylhexyl-salicylate, homosalate, and benzophenone-3) and olefinic moieties (4-methylbenzylidene-camphor, benzyl-cinnamate, and 2-ethylhexyl-4-methoxycinnamate) showed high ozone reactivity (k ≥ 8 × 10 Ms at pH 7), while those without such electron-rich moieties (isoamyl-benzoate and benzophenone) were ozone-refractory. All the UV filters showed high OH reactivity (k ≥ 6.2 × 10 Ms). In concordance with the rate constant information, the phenolic and olefinic UV filters were efficiently eliminated by ozone treatment, requiring specific ozone doses of <0.5 mgO/mgDOC for ∼100% elimination. The UV filters were eliminated by ≤ 38% at a UV fluence of 1500 mJ/cm in the UV-only treatment. Rapid photoisomerisation between the E and Z geometric isomers was observed for the olefinic UV filter, benzyl-cinnamate. The addition of HO (10 mg/L) greatly enhanced the elimination of all UV filters, indicating that OH was the main contributor to their elimination in the UV/HO treatment. A chemical kinetics approach developed previously for ozonation and UV/HO processes was shown to predict the elimination of the UV filters in the tested water matrices reasonably well, demonstrating that the chemical kinetics method can be used for a priori prediction of micropollutant elimination in oxidative treatment processes for potable reuse of municipal wastewater effluents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.05.028 | DOI Listing |
Front Microbiol
December 2024
Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
Soda lakes are unique double-extreme habitats characterized by high salinity and soluble carbonate alkalinity, yet harboring rich prokaryotic life. Despite intensive microbiology studies, little is known about the identity of the soda lake hydrolytic bacteria responsible for the primary degradation of the biomass organic matter, in particular cellulose. In this study, aerobic and anaerobic enrichment cultures with three forms of native insoluble cellulose inoculated with sediments from five soda lakes in south-western Siberia resulted in the isolation of four cellulotrophic haloalkaliphilic bacteria and their four saccharolytic satellites.
View Article and Find Full Text PDFChemosphere
January 2025
Laboratory of Water, Biodiversity and Climate Change (EauBiodiCc), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech Morocco; National Centre for Studies and Research on Water and Energy (CNEREE), University Cadi Ayyad, Marrakech Morocco. Electronic address:
J Hazard Mater
December 2024
The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
Microbe-mediated remediation becomes a desire method for removal of persistent organic pollutants (POPs) due to its eco-friendly and sustainable nature. The improvement of practical feasibility requires constructing comprehensive species pool, while it is still limited by the rapid recognition of potential bacterial resources from environment. Here, based on the relative abundances of bacterial OTUs and pollutant concentrations, we established indexes to assess their tolerance to organochlorine pesticides (OCPs) and flame retardants (FRs) that are atmospheric transported and naturally accumulated in forest soil via forest filter effect.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.
Int J Biol Macromol
December 2024
Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China. Electronic address:
Water purification has always been a critical yet challenging issue. In this study, an organic-inorganic composite membrane was developed using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized bacterial cellulose (BC) nanofibers and hydroxyapatite nanowires (HAPNW) with tunable wettability for advanced membrane separation applications. The resulting free-standing TEMPO-BC/HAPNW filter membrane exhibited strong mechanical strength, high flexibility, exceptional deformability, and a high pure water flux of up to 800 L·m·h due to its porous architecture and inherent hydrophilicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!