Heparanase is an endoglycosidase involved in remodeling the extracellular matrix and thereby in regulating multiple cellular processes and biological activities. It cleaves heparan sulfate (HS) side chains of HS proteoglycans into smaller fragments and hence regulates tissue morphogenesis, differentiation, and homeostasis. Heparanase is overexpressed in various carcinomas, sarcomas, and hematological malignancies, and its upregulation correlates with increased tumor size, tumor angiogenesis, enhanced metastasis, and poor prognosis. In contrast, knockdown or inhibition of heparanase markedly attenuates tumor progression, further underscoring the potential of anti-heparanase therapy. Heparanase inhibitors were employed to interfere with tumor progression in preclinical studies, and selected heparin mimetics are being examined in clinical trials. However, despite tremendous efforts, the discovery of heparanase inhibitors with high clinical benefit and minimal adverse effects remains a therapeutic challenge. This review discusses the key roles of heparanase in cancer progression focusing on the status of natural, chemically modified, and synthetic heparanase inhibitors in various types of malignancies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548846 | PMC |
http://dx.doi.org/10.1016/j.isci.2019.04.034 | DOI Listing |
Viruses
November 2024
Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.
The host enzyme heparanase (HPSE) facilitates the release of herpes simplex virus type 2 (HSV-2) from target cells by cleaving the viral attachment receptor heparan sulfate (HS) from infected cell surfaces. HPSE 2, an isoform of HPSE, binds to but does not possess the enzymatic activity needed to cleave cell surface HS. Our study demonstrates that HSV-2 infection significantly elevates HPSE 2 protein levels, impacting two distinct stages of viral replication.
View Article and Find Full Text PDFBiomolecules
November 2024
Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa 3109601, Israel.
Bone metastasis and steroids are known to activate the coagulation system and induce osteoporosis, pathological bone fractures, and bone pain. Heparanase is a protein known to enhance the hemostatic system and to promote angiogenesis, metastasis, and inflammation. The objective of the present study was to evaluate the effects of steroids and malignancy on the coagulation factors and osteoblast activity in the bone tissue.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy.
Sci Rep
November 2024
Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA.
The pivotal role of endothelial nitric oxide synthase (eNOS) in diabetic nephropathy (DN) has been demonstrated using global eNOS knockout (eNOSGKO) mice. However, the precise role of endothelially expressed eNOS and how its deficiency advances DN are still unclear. Here, we targeted endothelial eNOS expression (E-eNOSKO) after the onset of diabetes using the floxed eNOS and endSCL-CreER alleles.
View Article and Find Full Text PDFBreast Cancer Res
November 2024
Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA.
Background: Breast cancer, one of the most common forms of cancer, is associated with the highest cancer-related mortality among women worldwide. In comparison to other types of breast cancer, patients diagnosed with the triple-negative breast cancer (TNBC) subtype have the worst outcome because current therapies do not produce long-lasting responses. Hence, innovative therapies that produce persisting responses are a critical need.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!