Prompt diagnosis and appropriate treatment of malaria remain the hallmark for reducing malaria-related mortality in high transmission areas. Plasmodium falciparum histidine-rich protein2 (PfHRP2) based rapid diagnostic tests (RDT) play a vital role in prompt and accurate malaria diagnosis. However, pfhrp2 gene deletion threatens the RDT test sensitivity. This study reports the presence of pfhrp2 and pfhrp3 genes deletion among parasite isolates in Nigeria. Febrile children were screened using histidine-rich protein (HRP2) specific RDT (SD-Bioline RDT) and microscopy for P. falciparum infections. All RDT negative samples were re-evaluated by polymerase chain reaction (PCR). The presence of parasite in RDT false negative cases and randomly selected RDT positive cases were validated using PCRs targeting glutamate-rich protein (glurp) and merozoite surface proteins (msp-1 and msp-2). Thereafter, exon 2 of pfhrp2 and pfhrp3 were amplified, and Sanger sequenced. A total of 511 febrile children were enrolled out of which 309 (61%) were positive by RDT. The presence of pfhrp2 and pfhrp3 genes were analyzed in 66 PCR positive samples comprising of 31 RDT false negative and 35 RDT true positive randomly selected samples. The pfhrp2 and pfhrp3 genes failed to amplify in 17% (11/66) and 6% (4/66) samples, respectively. Seven of the eleven samples had only pfhrp2 deletion while four had both pfhrp2 and pfhrp3 deletions. The absence of the pfhrp2 gene may be responsible for the seven RDT false negative cases observed. Three RDT positive cases lacked pfhrp2 whereas pfhrp3 was absent in only four RDT false negative cases. The pfhrp2 and pfhrp3 amino acid repeat sequences were highly diverse. The P. falciparum isolates lacking pfhrp2 and pfhrp3 genes may be circulating and contributing to RDT false negativity in Nigeria. More studies in larger population and seasonally defined cases will be needed to determine the extent of pfhrp2/3 genes deletion in different geographical areas of Nigeria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actatropica.2019.05.016DOI Listing

Publication Analysis

Top Keywords

pfhrp2 pfhrp3
36
pfhrp3 genes
20
rdt false
20
false negative
16
rdt
14
pfhrp2
13
genes deletion
12
negative cases
12
pfhrp3
9
plasmodium falciparum
8

Similar Publications

Very low prevalence of Plasmodium falciparum histidine-rich protein 2 (pfhrp2) gene deletion in the Brazil, Venezuela, and Guyana tri-border.

Sci Rep

January 2025

Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou (IRR), Fundação Oswaldo Cruz (FIOCRUZ), Minas Gerais, Brazil.

Rapid Diagnostic Tests (RDTs) have been an important diagnostic tool for detecting P. falciparum malaria in resource-limited settings. Most tests are designed to detect the Histidine-rich Protein 2 (HRP2).

View Article and Find Full Text PDF

Background: Rapid diagnostic tests (RDTs) based on the detection of Plasmodium falciparum histidine rich protein 2 (PfHRP2) are widely used for the diagnostic of P. falciparum in Africa. However, deletions of the pfhrp2 and pfhrp3 genes can lead to false negative test results and compromise appropriate case management.

View Article and Find Full Text PDF

Malaria rapid diagnostic tests (RDTs) targeting the Plasmodium falciparum histidine-rich protein 2 (PfHRP2) are widely used to diagnose P. falciparum infection. However, reports of P.

View Article and Find Full Text PDF

Rapid diagnostic tests (RDTs) are crucial for diagnosing malaria in resource-limited settings. These tests, which detect the histidine-rich protein 2 (PfHRP2) and its structural homologue PfHRP3, are specifically designed to identify Plasmodium falciparum. Deletion of the Pfhrp2 gene in parasite has been reported in India and other malaria-endemic countries.

View Article and Find Full Text PDF

The spread of molecular markers of artemisinin partial resistance and diagnostic evasion in Eritrea: a retrospective molecular epidemiology study.

Lancet Microbe

December 2024

Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Gallipolli Barracks, Enoggera, QLD, Australia; Australian Defence Force Malaria and Infectious Disease Institute Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. Electronic address:

Background: Eritrea was the first African country to discontinue the use of histidine rich protein 2 (HRP2)-detecting rapid diagnostic tests (RDTs) for malaria diagnosis following reports of a high prevalence of pfhrp2/3-deleted Plasmodium falciparum parasites causing false-negative results in the country. Eritrea was also the first African country to report partial artemisinin resistance due to the P falciparum kelch13 (pfk13) Arg622Ile mutation. We aimed to characterise the spatial distribution of pfk13 mutants and their interactions with pfhrp2/3 deletions in Eritrea and to assess the role of the use of HRP2-detecting RDTs and antimalarial (artesunate-amodiaquine) therapy in the spread of the two variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!