Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phototherapy has been offered as an alternative and promising antibacterial strategy to overcome the antibiotic resistance problem. This study evaluated the antibacterial and phototherapy effects of carbon nanotubes with a polypyrrole coating in a core@shell structure (CNTs@PPy) on Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa was treated with CNTs@PPy at different concentrations (50-500 μg mL) in dark or laser light irradiation with a wavelength of 808 nm, a power density of 1000 mW cm for 20 min. Temperature increment, cell viability, formation of reactive oxygen species (ROS) and protein/nucleic acid leakage subsequent the P. aeruginosa treatment were evaluated. The results showed that near-infrared laser irradiation of CNTs@PPy caused to a temperature increment confirming the ability of powerful photokilling of P. aeruginosa in a photothermal route. On the other hand, while CNTs@PPy represented just a 30-50% P. aeruginosa killing rate in dark, laser irradiation of 250 and 500 μg mL concentrations of CNTs@PPy resulted in a ˜70% P. aeruginosa killing rate, along with significant ROS production into the medium and protein and nucleic acid leakage from P. aeruginosa. These later effects were assigned to a photodynamic route activity of CNTs@PPy upon laser irradiation. Therefore, CNTs@PPy acted as a photosensitizer in both photothermal and photodynamic therapies to present an enhanced bactericidal activity to annihilate and destroyed the gram-negative bacteria P. aeruginosa, a cause of many infectious diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2019.05.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!