Lithocholic acid is a cytotoxic bile acid oxidized at the C-3 position by human cytochrome P450 3A (CYP3A) to form 3-ketocholanoic acid, but it is not known whether this metabolite is cytotoxic. Tocotrienols, in their various isomeric forms, are vitamin E analogues. In the present study, the hypothesis to be tested is that tocotrienols inhibit CYP3A-catalyzed lithocholic acid 3-oxidation, thereby influencing lithocholic acid cytotoxicity. Our enzyme catalysis experiments indicated that human recombinant CYP3A5 in addition to CYP3A4, liver microsomes, and intestinal microsomes catalyzed lithocholic acid 3-oxidation to form 3-ketocholanoic acid. Liver microsomes with the CYP3A5*1/*3 and CYP3A5*3/*3 genotypes were associated with decreased lithocholic acid 3-oxidation. α-Tocotrienol, γ-tocotrienol, δ-tocotrienol, and a tocotrienol-rich vitamin E mixture, but not α-tocopherol (a vitamin E analogue), differentially inhibited lithocholic acid 3-oxidation catalyzed by liver and intestinal microsomes and recombinant CYP3A4 and CYP3A5. Compared to lithocholic acid 3-oxidation, CYP3A-catalyzed testosterone 6β-hydroxylation was inhibited to a lesser extent by α-tocotrienol, γ-tocotrienol, δ-tocotrienol, and a tocotrienol-rich vitamin E mixture. δ-Tocotrienol inhibited lithocholic acid 3-oxidation by a mixed mode. Like lithocholic acid, 3-ketocholanoic acid was also cytotoxic in human intestinal and liver cell models. δ-Tocotrienol decreased the extent of lithocholic acid 3-oxidation and this inhibition was associated with enhanced cytotoxicity in LS180 cells treated with δ-tocotrienol and lithocholic acid. Overall, vitamin E analogues inhibited in vitro lithocholic acid 3-oxidation in an isomer-dependent manner, with inhibition occurring with tocotrienols, but not α-tocopherol. The enhanced lithocholic acid toxicity by δ-tocotrienol in a human intestinal cell model warrants future investigations in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2019.05.005 | DOI Listing |
Nature
January 2025
State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
Metabolism
January 2025
Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. Electronic address:
Epithelial sodium channel (ENaC), located in the collecting duct principal cells of the kidney, is responsible for the reabsorption of sodium and plays a critical role in the regulation of extracellular fluid volume and consequently blood pressure. The G protein-coupled bile acid receptor (TGR5) is a membrane receptor mediating effects of bile acid and is implicated in kidney diseases. The current study aims to investigate whether TGR5 activation in the kidney regulated ENaC expression and potential mechanism.
View Article and Find Full Text PDFEnviron Res
January 2025
Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada. Electronic address:
Metabolomics measures low molecular weight endogenous metabolites and changes linked to contaminant exposure in biota. However, few studies have explored the relationship between metabolomics and contaminants in Arctic wildlife. We analyzed 239 endogenous metabolites and ∼150 persistent organic pollutants (POPs), including total mercury (THg), in the liver of polar bears and their ringed seal prey harvested from low Canadian Arctic (western Hudson Bay; WHB) and high Arctic (HA) locations during 2015-2016.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2025
Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA.
Unlabelled: Omadacycline, an aminomethylcycline tetracycline, has a low propensity to cause infection (CDI) in clinical trials. Omadacycline exhibited a reduced bactericidal effect compared with vancomycin on key microorganisms implicated in bile acid homeostasis and short-chain fatty acids (SCFAs), key components of CDI pathogenesis. The purpose of this study was to assess bile acid and SCFA changes in stool samples from healthy volunteers given omadacycline or vancomycin.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Health and Nutrition, Yamagata Prefectural Yonezawa University of Nutrition Sciences, 6-15-1, Torimachi, Yonezawa, Yamagata, 992-0025, Japan.
Colorectal cancer has the second highest mortality among cancer sites worldwide, with increasing morbidity, high recurrence rates, and even poorer postoperative quality of life. Therefore, preventive strategies for colorectal cancer should be established. This study aimed to cross-sectionally explore dietary patterns affecting the intestinal metabolism of bile acids (BAs), a risk factor for colorectal cancer, in young Japanese women.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!