Background: Long non-coding RNA H19 (lncRNA H19) has been widely reported in esophageal cancer (EC), and previous study had found that lncRNAH19 was up-regulated in EC and promoted cell proliferation and metastasis. However, the mechanism still needs further studied.

Methods: Levels of lncRNA H19 were analyzed by qRT-PCR in matched samples from 30 patients. Expression levels of lncRNA H19, let-7, STAT3 and EZH2 were additionally identified by qRT-PCR and western blotting in five EC cell lines. The effects of lncRNA H19 on cell proliferation, migration, invasion and apoptosis in cell lines were performed by MTT assay, colony formation assay, Transwell assay and flow cytometry in vitro, and tumor formation was detected by xenograft nude mice model in vivo. The expression level of STAT3, EZH2, β-catenin, and EMT and metastasis related molecules such as E-cadherin, N-cadherin, Snail-1 and MMP-9 was assessed by qRT-PCR and western blotting. Finally, luciferase reporter assay and RIP assay were used to verify the interaction between lncRNA H19 and let-7c, and their subsequent regulation of STAT3.

Results: Knockdown of lncRNA H19 repressed cell proliferation, migration and invasion as well as EMT and metastasis via STAT3-EZH2-β-catenin pathway, while lncRNA H19 regulated STAT3 negatively regulated let-7c in EC cell lines.

Conclusions: lncRNA H19 facilitates EMT and metastasis of EC through let-7c/STAT3/EZH2/β-catenin axis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2019.05.011DOI Listing

Publication Analysis

Top Keywords

lncrna h19
36
cell proliferation
12
emt metastasis
12
lncrna
9
h19
9
esophageal cancer
8
levels lncrna
8
stat3 ezh2
8
qrt-pcr western
8
western blotting
8

Similar Publications

Background: Autism spectrum disorder (ASD) appears to be a common neurological developmental deficit disorder in pediatric patients, resulting in a tremendous burden on society.

Purpose: The article aimed to explore early diagnostic markers for ASD.

Methods: Levels of long non-coding RNA (lncRNA) H19 and microRNA-484 (miR-484) were detected using fluorescence quantitative polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Botox-A Induced Apoptosis and Suppressed Cell Proliferation in Fibroblasts Pre-Treated with Breast Cancer Exosomes.

Mol Cell Probes

December 2024

Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. Electronic address:

Background: breast cancer-associated fibroblast (CAF) is linked to metastasis and is poor for breast cancer prognosis. Since Clostridium Toxin A (Botox-A) had represented a cytotoxic effect on fibroblasts, this study aims to assess Botox-A cytotoxicity in both normal fibroblasts and exosome-induced CAFs.

Material And Method: the serum exosomes of 40 BC patients and 30 healthy individuals were isolated and lncRNA H19 (lnch19) levels were assessed by qRT-PCR method.

View Article and Find Full Text PDF

Zbtb7b defines a compensatory mechanism in MASLD-related HCC progression by suppressing H19-mediated hepatic lipid deposition.

Physiol Rep

December 2024

Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Hepatocellular carcinoma (HCC) is a widely prevalent type of primary liver cancer. However, strategies for pretumor intervention are still limited. In this study, a liver-specific Zbtb7b knockout mouse model was used to evaluate the role of Zbtb7b in metabolic dysfunction-associated steatotic liver disease (MASLD)-related HCC development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!