Differential parietal activations for spatial remapping and saccadic control in a visual memory task.

Neuropsychologia

Department of Neurosciences, University Medical Center, University of Geneva, Switzerland; Department of Neurology, University Hospital of Geneva, Switzerland; Campus Biotech, University of Geneva, Switzerland.

Published: August 2019

Remapping is a process that updates visual information in internal spatial representations across eye movements, allowing for stable perception of the environment. Previous work has demonstrated visual remapping activity in parietal cortex during saccades, but it remains unclear whether remapping is triggered by overt saccades only (or by attentional shifts also), and whether it engages parietal areas only (or other cortical areas). Here, we used fMRI to investigate spatial remapping during two visuospatial memory tasks requiring either overt (accompanied by a saccade) or covert (with central fixation) attention shifts to peripheral distracters. Participants had to remember the position and color of a lateralized dot during a saccade or attention shift, requiring them to update the dot position in memory, and then indicate if a second dot matched the first. Differential activation patterns were observed within parietal cortex as a function of the different visual, motor, and interhemispheric remapping demands in the saccade task, presumably mediating the maintenance of spatial position in perceptual and motor maps. Remapping engaged parietal areas adjacent to, but not overlapping with, those activated by saccade execution, while it did not engage the frontal eye fields, pointing to distinct neural substrates for ocular motor and spatial updating processes. No differential activation related to remapping was found during the covert attention shift task, suggesting that this condition did not necessitate the same remapping as the saccade condition. Overall these results further elucidate the mechanisms of spatial remapping in human parietal cortex and their relationship with attention processing and ocular motor behavior, with implications for understanding visuospatial attention deficits in hemispatial neglect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropsychologia.2019.05.010DOI Listing

Publication Analysis

Top Keywords

spatial remapping
12
parietal cortex
12
remapping
10
parietal areas
8
attention shift
8
differential activation
8
ocular motor
8
spatial
6
parietal
5
saccade
5

Similar Publications

Navigating uncertainty is crucial for survival, with the location and availability of reward varying in different and unsignalled ways. Hippocampal place cell populations over-represent salient locations in an animal's environment, including those associated with rewards; however, how the spatial uncertainties impact the cognitive map is unclear. We report a virtual spatial navigation task designed to test the impact of different levels and types of uncertainty about reward on place cell populations.

View Article and Find Full Text PDF

How Ideas About Context and Remapping Developed in Brooklyn.

Hippocampus

January 2025

Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA.

In 1979, I joined Jim Ranck's group in Brooklyn and began recording hippocampal neurons. The first project was to record single neurons across three behaviors in different chambers: pellet retrieval on a radial-arm maze, bar-pressing for food reward in an operant chamber, and maternal pup-retrieval in a large home box. We found spatial firing in all three chambers, with a single-neuron's firing pattern unpredictable from one chamber to the next.

View Article and Find Full Text PDF

This study investigated how the judgment of proximal joint position can be affected by touch alone, focused attention on the distal body part, or touch spatial localization. Participants completed a two-arm elbow joint position-matching task, in which they indicated the location of one forearm by the placement of the other. In four test conditions, matching was performed during (1) detection of touch (tactile stimulation of index finger pads), (2) spatial localization of fingers (attention focused on the position of index finger pads), (3) spatial localization of touch on fingers (attention focused on tactile stimulation of index finger pads), and (4) detection of touch but localization of fingers (tactile stimulation of index finger pads, but attention focusing on the spatial position of the pads).

View Article and Find Full Text PDF

Episodic memory involves the processing of spatial and temporal aspects of personal experiences. The lateral entorhinal cortex (LEC) plays an essential role in subserving memory. However, the mechanisms by which LEC integrates spatial and temporal information remain elusive.

View Article and Find Full Text PDF

Identifying representational structure in CA1 to benchmark theoretical models of cognitive mapping.

Neuron

January 2025

Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada. Electronic address:

Decades of theoretical and empirical work have suggested the hippocampus instantiates some form of a cognitive map. Yet, tests of competing theories have been limited in scope and largely qualitative in nature. Here, we develop a novel framework to benchmark model predictions against observed neuronal population dynamics as animals navigate a series of geometrically distinct environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!