Low-dose computed tomography (CT) lung cancer screening is recommended by the US Preventive Services Task Force for high lung cancer-risk populations. In this study, we investigated an important factor affecting the CT dose-the scan length, for this CT exam. A neural network model based on the "UNET" framework was established to segment the lung region in the CT scout images. It was trained initially with 247 chest X-ray images and then with 40 CT scout images. The mean Intersection over Union (IOU) and Dice coefficient were reported to be 0.954 and 0.976, respectively. Lung scan boundaries were determined from this segmentation and compared with the boundaries marked by an expert for 150 validation images, resulting an average 4.7% difference. Seven hundred seventy CT low-dose lung screening exams were retrospectively analyzed with the validated model. The average "desired" scan length was 252 mm with a standard deviation of 28 mm. The average "over-range" was 58.5 mm or 24%. The upper boundary (superior) on average had an "over-range" of 17 mm, and the lower boundary (inferior) on average had an "over-range" of 41 mm. Further analysis of this data showed that the extent of "over-range" was independent of acquisition date, acquisition time, acquisition station, and patient age, but dependent on technologist and patient weight. We concluded that this machine learning method could effectively support quality control on the scan length for CT low-dose screening scans, enabling the eliminations of unnecessary patient dose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6841821PMC
http://dx.doi.org/10.1007/s10278-019-00233-zDOI Listing

Publication Analysis

Top Keywords

scan length
12
average "over-range"
12
low-dose lung
8
lung cancer
8
cancer screening
8
machine learning
8
scout images
8
lung
6
scan
5
"over-range"
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!