cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs.

Naunyn Schmiedebergs Arch Pharmacol

Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.

Published: August 2019

Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-019-01650-1DOI Listing

Publication Analysis

Top Keywords

protein-mediated signal
8
signal transduction
8
karl jakobs
8
camp guided
4
guided life
4
life protein-mediated
4
transduction molecular
4
molecular pharmacology-tribute
4
pharmacology-tribute karl
4
jakobs karl
4

Similar Publications

Fas has been shown to positively regulate the differentiation of T helper 17 (Th17) cells in mouse models of experimental autoimmune encephalomyelitis (EAE). Fas protein expression is regulated by ubiquitination but has not been further studied. In this study, we investigated the role of the Fas ubiquitin ligase in Th17 cell differentiation and highlighted its potential as a therapeutic target for EAE.

View Article and Find Full Text PDF

Objective: The control of energy balance involves neural circuits in the central nervous system, including AGRP neurons in the arcuate nucleus of the hypothalamus (ARC). AGRP neurons are crucial for energy balance and their increased activity during fasting is critical to promote feeding behavior. The activity of these neurons is influenced by multiple signals including those acting on G-protein coupled receptors (GPCR) activating different intracellular signaling pathways.

View Article and Find Full Text PDF

Steroidogenic acute regulatory protein mediated variations of gender-specific sex neurosteroids in Alzheimer's disease: Relevance to hormonal and neuronal imbalance.

Neurosci Biobehav Rev

December 2024

Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA. Electronic address:

Article Synopsis
  • The StAR protein plays a crucial role in the initial steps of neuro/steroid production, which is important for hormone balance especially as we age.
  • Aging leads to changes in the immune system and decreases in neurosteroids, increasing the risk of Alzheimer's disease (AD), particularly in women.
  • Research shows that alterations in StAR levels and neurosteroid production are linked to AD pathology, highlighting the potential for retinoid signaling as a therapeutic target for improving brain health and reducing dementia risk.
View Article and Find Full Text PDF

Robust and Versatile Biodegradable Unclonable Anti-Counterfeiting Labels with Multi-Mode Optical Encoding Using Protein-Mediated Luminescent Calcite Signatures.

Adv Mater

December 2024

National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.

Physical unclonable functions (PUFs) are emerging as a cutting-edge technology for enhancing information security by providing robust security authentication and non-reproducible cryptographic keys. Incorporating renewable and biocompatible materials into PUFs ensures safety for handling, compatibility with biological systems, and reduced environmental impact. However, existing PUF platforms struggle to balance high encoding capacity, diversified encryption signatures, and versatile functionalities with sustainability and biocompatibility.

View Article and Find Full Text PDF

Background And Purpose: Metabotropic glutamate receptors (mGlus) are obligate dimer G protein coupled receptors that can all homodimerize and heterodimerize in select combinations. Responses of mGlu heterodimers to selective ligands, including orthosteric agonists and allosteric modulators, are largely unknown.

Experimental Approach: The pharmacological properties of each group II and III mGlu homodimer (except mGlu6) and several heterodimers were examined when stochastically assembled in HEK293T cells, or specifically measured using an improved G protein mediated BRET assay employing complimented fragments of NanoLuciferase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!