Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00210-019-01650-1 | DOI Listing |
Scand J Immunol
January 2025
Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
Fas has been shown to positively regulate the differentiation of T helper 17 (Th17) cells in mouse models of experimental autoimmune encephalomyelitis (EAE). Fas protein expression is regulated by ubiquitination but has not been further studied. In this study, we investigated the role of the Fas ubiquitin ligase in Th17 cell differentiation and highlighted its potential as a therapeutic target for EAE.
View Article and Find Full Text PDFMol Metab
December 2024
Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, USA. Electronic address:
Objective: The control of energy balance involves neural circuits in the central nervous system, including AGRP neurons in the arcuate nucleus of the hypothalamus (ARC). AGRP neurons are crucial for energy balance and their increased activity during fasting is critical to promote feeding behavior. The activity of these neurons is influenced by multiple signals including those acting on G-protein coupled receptors (GPCR) activating different intracellular signaling pathways.
View Article and Find Full Text PDFNeurosci Biobehav Rev
December 2024
Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA. Electronic address:
Adv Mater
December 2024
National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
Physical unclonable functions (PUFs) are emerging as a cutting-edge technology for enhancing information security by providing robust security authentication and non-reproducible cryptographic keys. Incorporating renewable and biocompatible materials into PUFs ensures safety for handling, compatibility with biological systems, and reduced environmental impact. However, existing PUF platforms struggle to balance high encoding capacity, diversified encryption signatures, and versatile functionalities with sustainability and biocompatibility.
View Article and Find Full Text PDFBackground And Purpose: Metabotropic glutamate receptors (mGlus) are obligate dimer G protein coupled receptors that can all homodimerize and heterodimerize in select combinations. Responses of mGlu heterodimers to selective ligands, including orthosteric agonists and allosteric modulators, are largely unknown.
Experimental Approach: The pharmacological properties of each group II and III mGlu homodimer (except mGlu6) and several heterodimers were examined when stochastically assembled in HEK293T cells, or specifically measured using an improved G protein mediated BRET assay employing complimented fragments of NanoLuciferase.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!