Root-knot nematodes (RKN) such as Meloidogyne spp. are among the most detrimental pests in agriculture affecting several crops. New methodologies to manage RKN are needed such as efficient discovery of nematophagous microbes. In this study, we developed an in vitro high-throughput method relying on the free-living nematode Caenorhabditis elegans and the infection of those nematodes with a soil slurry containing a microbiome likely to house nematophagous microbes. Nematodes were monitored for presence of infection and sub-cultured repeatedly for the purpose of isolating pure cultures of the microbe responsible for conferring the nematicidal activity. Once soil microbes were confirmed to be antagonistic to C. elegans, they were tested for pathogenicity against Meloidogyne chitwoodi. Using this methodology, the fungal isolate Mortierella globalpina was confirmed to be pathogenic in vitro against M. chitwoodi by nematode trapping via hyphal adhesion to the cuticle layer, penetration of the cuticle layer, and subsequently digestion of its cellular contents. M. globalpina was also observed to reduce disease symptomology of RKNs in vivo via significant reduction of root-galls on tomato (Solanum lycopersicum var. Rutgers).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525257 | PMC |
http://dx.doi.org/10.1038/s41598-019-44010-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!