A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

GFP fluorescence peak fraction analysis based nanothermometer for the assessment of exothermal mitochondria activity in live cells. | LitMetric

GFP fluorescence peak fraction analysis based nanothermometer for the assessment of exothermal mitochondria activity in live cells.

Sci Rep

Department of Nanophotonics, Ultrafast Bio- and Nanophotonics group, INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.

Published: May 2019

Nanothermometry methods with intracellular sensitivities have the potential to make important contributions to fundamental cell biology and medical fields, as temperature is a relevant physical parameter for molecular reactions to occur inside the cells and changes of local temperature are well identified therapeutic strategies. Here we show how the GFP can be used to assess temperature-based on a novel fluorescence peak fraction method. Further, we use standard GFP transfection reagents to assess temperature intracellularly in HeLa cells expressing GFP in the mitochondria. High thermal resolution and sensitivity of around 0.26% °C and 2.5% °C, were achieved for wt-GFP in solution and emGFP-Mito within the cell, respectively. We demonstrate that the GFP-based nanothermometer is suited to directly follow the temperature changes induced by a chemical uncoupler reagent that acts on the mitochondria. The spatial resolution allows distinguishing local heating variations within the different cellular compartments. Our discovery may lead to establishing intracellular nanothermometry as a standard method applicable to the wide range of live cells able to express GFP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525231PMC
http://dx.doi.org/10.1038/s41598-019-44023-7DOI Listing

Publication Analysis

Top Keywords

fluorescence peak
8
peak fraction
8
live cells
8
gfp
5
gfp fluorescence
4
fraction analysis
4
analysis based
4
based nanothermometer
4
nanothermometer assessment
4
assessment exothermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!