Effective vaccines inducing lifelong protection against many important infections such as respiratory syncytial virus (RSV), HIV, influenza virus, and Epstein-Barr virus (EBV) are not yet available despite decades of research. As an alternative to a protective vaccine, we developed a genetic engineering strategy in which CRISPR-Cas9 was used to replace endogenously encoded antibodies with antibodies targeting RSV, HIV, influenza virus, or EBV in primary human B cells. The engineered antibodies were expressed efficiently in primary B cells under the control of endogenous regulatory elements, which maintained normal antibody expression and secretion. Using engineered mouse B cells, we demonstrated that a single transfer of B cells engineered to express an antibody against RSV resulted in potent and durable protection against RSV infection in -deficient mice. This approach offers the opportunity to achieve sterilizing immunity against pathogens for which traditional vaccination has failed to induce or maintain protective antibody responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6913193PMC
http://dx.doi.org/10.1126/sciimmunol.aax0644DOI Listing

Publication Analysis

Top Keywords

cells engineered
12
engineered express
8
rsv hiv
8
hiv influenza
8
influenza virus
8
virus ebv
8
cells
5
express pathogen-specific
4
antibodies
4
pathogen-specific antibodies
4

Similar Publications

A mitochondria-targeted iridium(III) complex-based sensor for endogenous GSH detection in living cells.

Analyst

January 2025

Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.

Glutathione (GSH) plays an important role in maintaining redox homeostasis in biological systems. Development of reliable glutathione sensors is of great significance to better understand the role of biomolecules in living cells and organisms. Based on the advantages of the photophysical properties of iridium complexes, we proposed a "turn-on" phosphorescent sensor.

View Article and Find Full Text PDF

Adaptive Immunity Determines the Cancer Treatment Outcome of Oncolytic Virus and Anti-PD-1.

Bull Math Biol

January 2025

Department of Mathematics, University of Manitoba, 340 UMSU University Centre, Winnipeg, MB, R3T 2N2, Canada.

The immune checkpoint inhibitor, anti-programmed death protein-1 (anti-PD-1), enhances adaptive immunity to kill tumor cells, and the oncolytic virus (OV) triggers innate immunity to clear the infected tumor cells. We create a mathematical model to investigate how the interaction between adaptive and innate immunities under OV and anti-PD-1 affects tumor reduction. For different immunity strength, we create the corresponding virtual baseline patients and cohort patients to decipher the major factors determining the treatment outcome.

View Article and Find Full Text PDF

In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.

View Article and Find Full Text PDF

PD-L1/PD-1 checkpoint inhibitors (CPIs) are mainstream agents for cancer immunotherapy, but the prognosis is unsatisfactory in solid tumor patients lacking preexisting T-cell reactivity. Adjunct therapy strategies including the intratumoral administration of immunostimulants aim to address this limitation. CpG oligodeoxynucleotides (ODNs), TLR9 agonists that can potentiate adaptive immunity, have been widely investigated to tackle PD-L1/PD-1 resistance, but clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure.

View Article and Find Full Text PDF

Background: Lung adenocarcinoma is one of the most common malignant tumors worldwide. Its complex molecular mechanisms and high tumor heterogeneity pose significant challenges for clinical treatment. The manganese ion metabolism family plays a crucial role in various biological processes, and the abnormal expression of the NUDT3 gene in multiple cancers has drawn considerable attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!