Small aquarium fish models provide useful systems not only for a better understanding of the molecular basis of many human diseases, but also for first-line screening to identify new drug candidates. For testing new chemical substances, current strategies mostly rely on easy to perform and efficient embryonic screens. Cancer, however, is a disease that develops mainly during juvenile and adult stage. Long-term treatment and the challenge to monitor changes in tumor phenotype make testing of large chemical libraries in juvenile and adult animals cost prohibitive. We hypothesized that changes in the gene expression profile should occur early during anti-tumor treatment, and the disease-associated transcriptional change should provide a reliable readout that can be utilized to evaluate drug-induced effects. For the current study, we used a previously established medaka melanoma model. As proof of principle, we showed that exposure of melanoma developing fish to the drugs cisplatin or trametinib, known cancer therapies, for a period of seven days is sufficient to detect treatment-induced changes in gene expression. By examining whole body transcriptome responses we provide a novel route toward gene panels that recapitulate anti-tumor outcomes thus allowing a screening of thousands of drugs using a whole-body vertebrate model. Our results suggest that using disease-associated transcriptional change to screen therapeutic molecules in small fish model is viable and may be applied to pre-clinical research and development stages in new drug discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643878PMC
http://dx.doi.org/10.1534/g3.119.400051DOI Listing

Publication Analysis

Top Keywords

juvenile adult
8
changes gene
8
gene expression
8
disease-associated transcriptional
8
transcriptional change
8
expression signatures
4
signatures cisplatin-
4
cisplatin- trametinib-treated
4
trametinib-treated early-stage
4
early-stage medaka
4

Similar Publications

Chronic hyperoxia during early postnatal development depresses breathing when neonatal rats are returned to room air and causes long-lasting attenuation of the hypoxic ventilatory response (HVR). In contrast, little is known about the control of breathing of juvenile or adult mammals after chronic exposure to moderate hyperoxia later in life. Therefore, Sprague-Dawley rats were exposed to 60% O for 7 days (juveniles) or for 4 and 14 days (adults) and ventilation was measured by whole-body plethysmography immediately after the exposure or following a longer period of recovery in room air.

View Article and Find Full Text PDF

Assessing the impact of the iPeer2Peer program for adolescents with juvenile idiopathic arthritis: a mixed-methods randomized controlled trial.

Pediatr Rheumatol Online J

December 2024

Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, 686 Bay Street, Room 06.9715, Toronto, ON, M5G 0A4, Canada.

Background: Juvenile Idiopathic Arthritis (JIA) is a chronic pediatric illness, whereby youth experience physical, emotional and psychosocial challenges that result in reduced health related quality of life (HRQL). Peer mentoring has been shown to improve disease self-management in adults with chronic conditions, with mixed results in younger populations. Building on our pilot work - which supported the feasibility and initial effectiveness of the iPeer2Peer program - the objective of this study was to assess the clinical effectiveness of the program in youth with JIA through a waitlist randomized controlled trial.

View Article and Find Full Text PDF

Strong social bonds in gregarious adult animals have been associated with lower levels of glucocorticoids. However, similar research is lacking for juvenile primates. We examined relationships between social bonds and mean concentrations of fecal glucocorticoid metabolites (fGCMs) in 44 free-ranging juvenile rhesus macaques (Macaca mulatta) on Cayo Santiago, Puerto Rico.

View Article and Find Full Text PDF

Genetic Association of Juvenile Idiopathic Arthritis With Adult Rheumatic Disease.

JAMA Netw Open

December 2024

Department of Cell Biology, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Importance: Patients with juvenile idiopathic arthritis (JIA) may develop adult rheumatic diseases later in life, and prolonged or recurrent disease activity is often associated with substantial disability; therefore, it is important to identify patients with JIA at high risk of developing adult rheumatic diseases and provide specialized attention and preventive care to them.

Objective: To elucidate the full extent of the genetic association of JIA with adult rheumatic diseases, to improve treatment strategies and patient outcomes for patients at high risk of developing long-term rheumatic diseases.

Design, Setting, And Participants: In this genetic association study of 4 disease genome-wide association study (GWAS) cohorts from 2013 to 2024 (JIA, rheumatoid arthritis [RA], systemic lupus erythematosus [SLE], and systemic sclerosis [SSc]), patients in the JIA cohort were recruited from the US, Australia, and Norway (with a UK cohort included in the meta-analyzed cohort), while patients in the other 3 cohorts were recruited from US and Western European countries.

View Article and Find Full Text PDF

Generalized epilepsy is classically thought of as a disease of the young and adolescent, with rarely reported cases among older adults. We aimed to analyze management and outcomes in a population sparsely described in the literature through a retrospective single-center cohort design. After excluding individuals without follow-up, we identified 151 people ≥50 years at the time of electrographically confirmed generalized epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!