Multicriteria optimization (MCO), a novel commercially available optimization method for IMRT and VMAT has the potential to improve treatment planning techniques and workflows. MCO allows planners and physicians to assess in real time the impact and tradeoffs between all clinical goals and organ constraints. We investigate the feasibility of a universal set of objectives and constraints for VMAT plans in different anatomical sites and the impact of involving the Physician in the navigation of the generated Pareto plans. We randomly selected 20 prostate only, 14 whole pelvis, 10 advanced lung, 15 pancreas, and 7 head and neck plans planned with a VMAT technique. Using the clinically delivered isocenter and beam set-up, we retrospectively generated MCO plans with a universal set of constraints and objectives for each anatomical site. The MCO plan scores were compared with clinical plans or an independent plan generated with DMPO. For prostate only plans the TCP values for the clinical and MCO plans were similar and the rectum NTCP values and overall P+ were slightly better for the MCO plans. For whole pelvis, the resulting MCO plans were comparable in all the dosimetric measures to the clinical plans. For lung, the MCO dosimetric comparison also yielded comparable plans but when evaluating individual patients, there were 5 patients for which MCO plans had a clear advantage in reducing dose to lung and/or esophagus while improving/maintaining target coverage, 4 patients with comparable plans and 1 patient where MCO was worse. Allowing the physician to navigate independently produced a different selection of dosimetric trade-offs. Comparable MCO plans were also obtained for pancreas and head and neck. Based on our experience with many anatomical sites and a large number of patient plans, we have found that VMAT MCO plans are comparable to the clinical plans and can be produced with a universal set of objectives and constraints, even for a wide range of geometries and anatomies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meddos.2019.04.003DOI Listing

Publication Analysis

Top Keywords

mco plans
28
plans
18
mco
12
universal set
12
clinical plans
12
multicriteria optimization
8
vmat plans
8
set objectives
8
objectives constraints
8
anatomical sites
8

Similar Publications

Automatic plan selection using deep network-A prostate study.

Med Phys

December 2024

Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Quebec, Canada.

Background: Recently, high-dose-rate (HDR) brachytherapy treatment plans generation was improved with the development of multicriteria optimization (MCO) algorithms that can generate thousands of pareto optimal plans within seconds. This brings a shift, from the objective of generating an acceptable plan to choosing the best plans out of thousands.

Purpose: In order to choose the best plans, new criteria beyond usual dosimetrics volumes histogram (DVH) metrics are introduced and a deep learning (DL) framework is added as an automatic plan selection algorithm.

View Article and Find Full Text PDF

This article aims to compare the dosimetric performance between knowledge-based plan (KBP) libraries with and without trade-off (TO) exploration using multicriterial optimization (MCO) for tongue cancer patients. The trade-off optimized library (KBP_MCO) contains a minimal number of constituent plans, whereas two nontrade-off optimized libraries contain a minimal and a large number of treatment plans, respectively. Three KBP libraries were created: KBP_100 and KBP_20, each comprising of 100 and 20 manually optimized plans, respectively.

View Article and Find Full Text PDF

Nationwide, Couple-Based Genetic Carrier Screening.

N Engl J Med

November 2024

From the Centre for Clinical Genetics, Sydney Children's Hospital (E.P.K., K.B., S.R., S.K.), NSW Health Pathology Randwick Genomics Laboratory (E.P.K., B.R., C.C.C., F.Z., J.F., M.B., N.Q., S.R., S.K., T.R., Y.Z.), the School of Clinical Medicine (E.P.K., M.B.), the School of Women's and Children's Health (L. Freeman, S.R., S.K.), and the Randwick Clinical Campus, Neuroscience Research Australia (Y.Z.), University of New South Wales, Randwick, Victorian Clinical Genetics Services (M.B.D., A.D.A., A.K.-P., C.H., C.L., I.D., J.E.M., K.S., L.G., L.T., M.C.O., M. Wall, M.T.M.C., M.M.F., N.L., S. Lunke, S. Eggers), the Bruce Lefroy Centre, Murdoch Children's Research Institute (M.B.D., E.A.K.), the Department of Paediatrics (M.B.D., A.D.A., E.T., J.L.H., S. Lewis, B.J.M., J. Massie, E.A.K., Z.F.), the Department of General Practice and Centre for Cancer Research (J.D.E.), and the Department of Pathology (Sebastian Lunke), University of Melbourne, Murdoch Children's Research Institute (A.D.A., E.T., J.C., J.L.H., S. Lewis, B.J.M., J. Massie, A.R., E.A.K., E.O.M., L.G., M.H., S.J., S. Lunke, S. Eggers, T.F.B.), and Australian Genomics (J.C., A.J.N., S.B., Jeffrey Braithwaite, E.O.M., K.B., S.J., Z.F., T.F.B.), Parkville, VIC, the Faculty of Medicine and Health, Sydney School of Public Health, Sydney Health Ethics, University of Sydney, Camperdown, NSW (A.J.N., L.D.), the Graduate School of Health, University of Technology Sydney (L.D., L. Freeman), Macquarie University, Australian Institute of Health Innovation (J.C.L., J. Braithwaite, T.T.), and the Faculty of Medicine and Health, University of New South Wales (K.B.-S.), Sydney (R.C.), the Peter MacCallum Cancer Centre (S.B.), the Victorian Comprehensive Cancer Centre (S.B.), the Sir Peter MacCallum Department of Oncology (S.B.) and the Department of Obstetrics and Gynaecology (S.P.W.), University of Melbourne, the Department of Respiratory Medicine and Children's Bioethics Centre, the Royal Children's Hospital (J. Massie), Genomic Diagnostics (A.K.), and Virtus Health, Virtus Genetics (S.S.-M.), Melbourne, VIC, Menzies Health Institute Queensland, Griffith University, and Griffith University School of Medicine and Dentistry, Gold Coast (M.J.D., P.A.S.), the Northern Clinical School, Faculty of Medicine and Health (K.B.S., L.B.), and Royal North Shore Hospital, Kolling Institute, Cancer Genetics Laboratory (Y.Z.), University of Sydney, St. Leonards, NSW, SA Pathology (A.K., T.H.), South Australian Clinical Genetics Service (J.L.) and the Pediatric and Reproductive Genetics Unit (L. Fitzgerald), Women's and Children's Hospital, and Repromed (J.L.), Adelaide, the Children's Hospital at Westmead, Sydney Genome Diagnostics (B.H.B., G.H., K.F.), the Specialty of Genomic Medicine, Faculty of Medicine and Health, the Children's Hospital at Westmead Clinical School, University of Sydney (B.H.B., G.H., K.F.), and the Department of Clinical Genetics, the Children's Hospital at Westmead (K.B.), Westmead, NSW, Genetic Health Queensland, Royal Brisbane and Women's Hospital (C.E., J. McGaughran, T. Clinch), and the School of Medicine, University of Queensland (Julie McGaughran), Brisbane, the Department of Diagnostic Genomics, PathWest Laboratory Medicine (D.A., M.R.D., P.K.P., R.J.N.A., R.O., T. Catchpool, N.G.L.), the School of Biological Sciences, Centre for Genetic Origins of Health and Disease (J. Beilby), the Centre for Medical Research (M.R.D., R.O., N.G.L.), and the Faculty of Health and Medical Sciences (N.P.), University of Western Australia, and Harry Perkins Institute of Medical Research (R.O., Samantha Edwards, N.G.L.), Nedlands, the Department of Pathology and Laboratory Medicine, Medical School, University of Western Australia (D.A.), and Genetic Services of Western Australia, King Edward Memorial Hospital (J.K., N.P.), Perth, the Tasmanian Clinical Genetics Service (K.H., M. Wallis) and the School of Medicine and Menzies Institute for Medical Research (M. Wallis), University of Tasmania, Hobart, the Garvan Institute of Medical Research and the School of Clinical Medicine, St. Vincent's Clinical Campus, University of New South Wales, Darlinghurst (L.B.), King Edward Memorial Hospital, Subiaco, WA (N.P.), the School of Biomedical Sciences, University of Western Australia, Crawley (R.J.N.A.), Sonic Healthcare, Douglass Hanly Moir Pathology, Macquarie Park, NSW (S.S.), Mercy Hospital for Women, Mercy Perinatal, Heidelberg, VIC (S.P.W.), and Monash IVF Group, Richmond, VIC (T.H.) - all in Australia; and the International Society for Quality in Health Care, Dublin (J. Braithwaite).

Background: Genomic sequencing technology allows for identification of reproductive couples with an increased chance, as compared with that in the general population, of having a child with an autosomal recessive or X-linked genetic condition.

Methods: We investigated the feasibility, acceptability, and outcomes of a nationwide, couple-based genetic carrier screening program in Australia as part of the Mackenzie's Mission project. Health care providers offered screening to persons before pregnancy or early in pregnancy.

View Article and Find Full Text PDF

Purpose: This study investigated the applicability of 3-dimensional dose predictions from a model trained on one modality to a cross-modality automated planning workflow. Additionally, we explore the impact of integrating a multicriteria optimizer (MCO) on adapting predictions to different clinical preferences.

Methods And Materials: Using a previously created 3-stage U-Net in-house model trained on the 2020 American Association of Physicists in Medicine OpenKBP challenge data set (340 head and neck plans, all planned using 9-field static intensity modulated radiation therapy [IMRT]), we retrospectively generated dose predictions for 20 patients.

View Article and Find Full Text PDF

Multicriteria optimization achieves superior normal tissue sparing in volumetric modulated arc therapy for gastric cancer.

BMC Cancer

November 2024

Radiation Physics Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.

Objective: To evaluate the benefits of volumetric modulated arc therapy (VMAT) based on multicriteria optimization (MCO) for gastric cancer patients, particularly the protection of serial organs at risk (OARs) that overlap with the target volume.

Methods: MCO and single-criterion optimization (SCO) VMAT plans were conducted among 30 gastric cancer patients, with a prescription dose of 50.4 Gy delivered in 28 fractions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!