Computational biomechanics for human body modeling has generally been categorized into two separated domains: finite element analysis and multibody dynamics. Combining the advantages of both domains is necessary when tissue stress and physical body motion are both of interest. However, the method for this topic is still in exploration. The aim of this study is to implement unique controlling strategies in finite element model for simultaneously simulating musculoskeletal body dynamics and in vivo stress inside human tissues. A finite element lower limb model with 3D active muscles was selected for the implementation of controlling strategies, which was further validated against in-vivo human motion experiments. A unique feedback control strategy that couples together a basic Proportion-Integration-Differentiation (PID) controller and generic active signals from Computed Muscle Control (CMC) method of the musculoskeletal model or normalized EMG singles was proposed and applied in the present model. The results show that the new proposed controlling strategy show a good correlation with experimental test data of the normal gait considering joint kinematics, while stress distribution of local lower limb tissue can be also detected in real-time with lower limb motion. In summary, the present work is the first step for the application of active controlling strategy in the finite element model for concurrent simulation of both body dynamics and tissue stress. In the future, the present method can be further developed to apply it in various fields for human biomechanical analysis to monitor local stress and strain distribution by simultaneously simulating human locomotion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2019.05.001DOI Listing

Publication Analysis

Top Keywords

finite element
20
lower limb
16
controlling strategy
12
implementation controlling
8
limb model
8
model active
8
active muscles
8
multibody dynamics
8
element analysis
8
tissue stress
8

Similar Publications

In this paper, we studied the diffusion characteristics and distribution patterns of gas leakage in soil from buried natural gas pipelines. The three-dimensional simulation model of buried natural gas pipeline leakage was established using Fluent software. Monitoring points of gas leakage mole fraction were set up at different locations, and the influence of buried depth and pressure factors on the mole fraction and diffusion of leaked gas was analyzed.

View Article and Find Full Text PDF

Piezoelectric materials are increasingly used in portable smart electronics and Internet of Things sensors. Among them, piezoelectric macro fiber composites (MFCs) have attracted much attention due to their architectural simplicity, scalability, and high-power density. However, most MFCs currently use toxic lead-based piezoelectric materials, hindering their applications for bio-friendly intelligent electronics.

View Article and Find Full Text PDF

Temperature-Robust Broadband Metamaterial Absorber via Semiconductor MOFs/Paraffin Hybridization.

Small

December 2024

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

The demand for temperature-robust electromagnetic wave (EMW) absorption materials is escalating due to the varying operational temperatures of electronic devices, which can easily soar up to 100 °C, significantly affecting EMW interference management. Traditional absorbers face performance degradation across broad temperature ranges due to alterations in electronic mobility and material impedance. This study presented a novel approach by integrating semiconductor metal-organic frameworks (SC-MOFs) with paraffin wax (PW), leveraging the precise control of interlayer spacing in SC-MOFs for electron mobility regulation and the introduction of paraffin wax for temperature-inert electromagnetic properties.

View Article and Find Full Text PDF

Pressure-improved Scott-Vogelius type elements.

Calcolo

December 2024

Institut für Mathematik, Universität Zürich, Winterthurerstr 190, 8057 Zürich, Switzerland.

The Scott-Vogelius element is a popular finite element for the discretization of the Stokes equations which enjoys inf-sup stability and gives divergence-free velocity approximations. However, it is well known that the convergence rates for the discrete pressure deteriorate in the presence of certain in a triangulation of the domain. Modifications of the Scott-Vogelius element such as the recently introduced pressure-wired Stokes element also suffer from this effect.

View Article and Find Full Text PDF

In a slim-floor structural system, beams and slabs are placed at the same level, reducing the overall floor height and material usage in vertical structures, thereby improving economic efficiency. The use of slim-floor structures is common practice in Finnish construction where these structures are typically constructed using hollow-concrete slabs and welded steel box beams. However, in Finland, only a few buildings utilise cross-laminated timber (CLT) slabs in slim-floor structures, and none have incorporated the composite action between CLT and steel beams.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!