Crystal structure of the multifunctional SAM-dependent enzyme LepI provides insights into its catalytic mechanism.

Biochem Biophys Res Commun

Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, PR China. Electronic address:

Published: July 2019

Pericyclic reactions are among the most powerful synthetic transformations widely applied in the synthesis of multiple regioselective and stereoselective carbon-carbon bonds. LepI is a recently identified S-adenosyl-l-methionine (SAM)-dependent enzyme, which could catalyze dehydration, Diels-Alder reaction, and the retro-Claisen rearrangement reactions. However, the mechanism underlying these reactions by LepI remains elusive. Here we report the structure of LepI in complex with SAM as its co-factor, which adopts a typical class I methyltransferase fold. Docking studies are performed to investigate the binding modes of various substrates/products and provide insights into the catalytic mechanism of the multiple reactions catalyzed by LepI. Our study suggests that the dehydration reaction may start from the deprotonation of the hydroxyl group on the pyridone ring of the substrate by LepI, during which R295 and D296 play important roles in substrate binding and stabilizing the reaction intermediate. The stereoselective dehydration is accomplished through the trans-conformer of the leaving alcohol group which is trapped by nearby residues. The pericyclic reactions following dehydration are facilitated by the hydrophobic and hydrophilic interactions in the binding pocket. H133 and R295, two residues not conserved in other methyltransferases, might account for the unique activity of LepI among the SAM-dependent methyltransferase family. Together, this study provides important structural insights into the unique reactions catalyzed by LepI and will shed light on the knowledge of mechanisms of pericyclic reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.05.031DOI Listing

Publication Analysis

Top Keywords

pericyclic reactions
12
sam-dependent enzyme
8
lepi
8
insights catalytic
8
catalytic mechanism
8
reactions catalyzed
8
catalyzed lepi
8
reactions
7
crystal structure
4
structure multifunctional
4

Similar Publications

Impact of Transition-State Aromaticity on Selective Radical-Radical Coupling of Triarylimidazolyl Radicals.

J Am Chem Soc

November 2024

Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.

Radical coupling reactions are generally known to have a low selectivity due to the high reactivity of radicals. In this study, high regio and substrate selectivity was discovered in the dimerization of triarylimidazolyl radicals (), a versatile photochromic reaction. When two different radicals, 2-(4-cyanophenyl)-4,5-diphenyl-1-imidazolyl radical () and 2-(4-methoxyphenyl)-4,5-diphenyl-1-imidazolyl radical (), were simultaneously generated in situ, a hexaarylbiimidazole, formed by selective coupling at the nitrogen atom at position 1 of and the carbon atom at position 2 of , was isolated with high selectivity as the main product among 24 possible radical dimer hexaarylbiimidazole derivatives.

View Article and Find Full Text PDF

Current approaches to the discovery of mechanochemical reactions in polymers are limited by the interconnection of the zero-force and force-modified potential energy surfaces since most mechanochemical reactions are force-biased thermal reactions. Here, carbamoyloximes are developed as a mechanophore class in which the mechanochemical reaction rates counterintuitively increase together with the thermal stability. All carbamoyloxime mechanophores undergo force-induced homolytic bond scission at the N-O bond, and their mechanochemical scission rate increases with the degree of substitution on the α-substituent.

View Article and Find Full Text PDF

Structural elucidation of 14-membered ring macrolide antibiotics using electrospray ionization tandem mass spectrometry and density functional theory calculations.

Rapid Commun Mass Spectrom

December 2024

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.

Rationale: Macrolides are critical antibiotics featuring a macrocyclic lactone core with deoxy sugars. Understanding their gas-phase fragmentation is challenging but essential for improving structural elucidation in mass spectrometry, which has implications for drug discovery and development.

Methods: We used electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS) combined with quantum chemical calculations to investigate the fragmentation pathways of erythromycin A and roxithromycin.

View Article and Find Full Text PDF

The reaction of sulfur trioxide (SO) and thiobenzoic acid (CHCOSH) is investigated in the gas phase under supersonic jet conditions. Rotational spectroscopy of the parent and several isotopically substituted derivatives, in conjunction with DFT calculations at the M06-2X/6-311++G(3df,3pd) level of theory, identify the product as thiobenzoic sulfuric anhydride, CHC(=S)OSOOH. Single point CCSD(T)/CBS(D-T)//M06-2X/6-311++G(3df,3pd) calculations place the electronic energy of the product anhydride 114 kJ/mol lower than that of SO+CHCOSH at infinite separation.

View Article and Find Full Text PDF

The significant synthetic potential and reactivity of tetracyanoethylene (TCNE) have captured the interest of numerous chemical communities. One of the most promising, readily achievable, yet least explored pathways for the reactivity of TCNE involves its interaction with arylamines. Typically, the reaction proceeds via tricyanovinylation (TCV); however, deviations from the standard chemical process have been observed in some instances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!