A novel ferrocene-functionalized silver cluster (FcAgCs) has been designed and synthesized with the assistant of ultrasound treatment and fully characterized by single crystal spectroscopy, IR, UV-Vis, XRD, TGA, NMR, CV and elemental analyses. Ultrasound synthesis method facilitates and accelerates synthesis of this amazing structure and plays a vital role in the synthesis of this special cluster. Single-crystal X-ray analysis reveal that the cluster can be described as a cationic [(dppf)Ag(CCBu)(CHOH)] (dppf = 1,1'-bis(diphenylphosphino)ferrocene) species consisted of four rhombic silver atom and two isolated BF counter anions. Thermal stability greater than 200 °C and solution CV results show that the title cluster is sufficiently stable and suitable for the fabricating of FcAgCs/ITO thin-films and exploring as electrochemical responding materials. Based on its properties, we use it to prepare thin-films on ITO substrate by spin coating method. Verification of synthesis, thickness, uniformity and stability of the fabricated FcAgCs/ITO thin-films were characterized and confirmed by UV, XRD, SEM and the scotch tape adhesion peel test. Moreover, we use this FcAgCs/ITO thin-film electrode as thin-film electrochemical detector which shows sensitive and quick response in the detection of HO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2019.04.009 | DOI Listing |
Rev Sci Instrum
January 2025
High Enthalpy Flow Diagnostics Group (HEFDiG), Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany.
A novel solid electrolyte sensor with considerably improved response times is presented. The new so-called eFIPEX [etched flux (Φ) probe experiment] is based on the FIPEX [flux (Φ) probe experiment] sensor applied for the measurement of molecular and atomic oxygen concentrations. A main application is the measurement of atmospheric atomic oxygen aboard sounding rockets up to altitudes of 250 km.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China.
The electrochemical two-electron oxygen reduction reaction (2e ORR) offers a sustainable pathway for the production of HO; however, the development of electrocatalysts with exceptional activity, selectivity, and long-term stability remains a challenging task. Herein, a novel approach is presented to addressing this challenge by synthesizing hierarchical hollow SmPO nanospheres with open channels via a two-step hydrothermal treatment. The produced compound demonstrates remarkable 2e selectivity, exceeding 93% across a wide potential range of 0.
View Article and Find Full Text PDFSci Adv
January 2025
Research Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020, Japan.
Thermal switches, which electrically turn heat flow on and off, have attracted attention as thermal management devices. Electrochemical reduction/oxidation switches the thermal conductivity (κ) of active metal oxide films. The performance of the previously proposed electrochemical thermal switches is low; the on/off κ-ratio is mostly less than 5, and the κ-switching width is less than 5 watts per meter kelvin.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea.
pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.
View Article and Find Full Text PDFSmall
December 2024
Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin, 300350, P. R. China.
Photovoltaic-driven electrochemical (PV-EC) carbon dioxide reduction (COR) coupled with sulfide oxidation (SOR) can efficiently convert the solar energy into chemical energy, expanding its applications. However, developing low-cost electrocatalysts that exhibit high selectivity and efficiency for both COR and SOR remains a challenge. Herein, a bifunctional copper selenide catalyst is developed with copper vacancies (v-CuSe) for the COR-SOR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!