Investigation of the novel mTOR inhibitor AZD2014 in neuronal ischemia.

Neurosci Lett

Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Acute Vascular Imaging Centre, University of Oxford, Oxford University Hospitals, Oxford, United Kingdom. Electronic address:

Published: July 2019

Introduction: Hamartin, a component of the tuberous sclerosis complex (TSC) that actively inhibits the mammalian target of rapamycin (mTOR), may mediate the endogenous resistance of Cornu Ammonis 3 (CA3) hippocampal neurons following global cerebral ischemia. Pharmacological compounds that selectively inhibit mTOR may afford neuroprotection following ischemic stroke. We hypothesize that AZD2014, a novel mTORC1/2 inhibitor, may protect neurons following oxygen and glucose deprivation (OGD).

Methods: Primary neuronal cultures from E18 Wistar rat embryos were exposed to 2 h OGD or normoxia. AZD2014 was administered either during OGD, 24 h prior to OGD or for 24 h following OGD. Cell death was quantified by lactate dehydrogenase assay. We characterized the expression of mTOR pathway proteins following exposure to AZD2014 using western blotting.

Results: Following 2 h OGD +24 h recovery, AZD2014 increased neuronal death when present during OGD. Rapamycin, the archetypal mTOR inhibitor, had no effect on cell death. Treatment with AZD2014 24 h prior to OGD and 24 h after OGD also enhanced cell death. While Western blotting showed a trend towards decreased expression levels of phospho-Akt relative to total Akt with increasing AZD2014 concentration, hamartin expression was also significantly decreased leading to activation of mTOR.

Conclusion: AZD2014 was detrimental to neurons that underwent ischemia. AZD2014 appeared to reduce hamartin, a known neuroprotective mediator, thereby preventing any beneficial effects of mTOR inhibition. Further characterization of the role of individual mTOR complexes (mTORC1 and mTORC2) and their upstream and downstream regulators are necessary to reveal whether these pathways are neuroprotective targets for stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2019.05.023DOI Listing

Publication Analysis

Top Keywords

ogd 24 h
12
cell death
12
azd2014
9
mtor inhibitor
8
ogd
8
2 h ogd
8
24 h prior
8
prior ogd
8
24 h ogd
8
mtor
7

Similar Publications

Oxidative stress and neuroinflammation play a pivotal role in pathomechanisms of brain ischemia. Our research aimed to formulate a nanotheranostic system for delivering carnosic acid as a neuroprotective agent with anti-oxidative and anti-inflammatory properties to ischemic brain tissue, mimicked by organotypic hippocampal cultures (OHCs) exposed to oxygen-glucose deprivation (OGD). In the first part of this study, the nanocarriers were formulated by encapsulating two types of nanocores (nanoemulsion (AOT) and polymeric (PCL)) containing CA into multilayer shells using the sequential adsorption of charged nanoobjects method.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Zhongnan Hospital, Wuhan University, Wuhan, China.

Background: Vascular cognitive impairment (VCI), including vascular cognitive impairment-no dementia (VCIND) and vascular dementia, is a cognitive impairment syndrome caused by cerebrovascular disease and its risk factors. Among people over 60 years old, the prevalence of VCIND is about 15-20%. VCIND, as the early stage of VCI, has become a focus of current research due to the fact that its patients are at greater risk of developing dementia and can benefit greatly from early intervention.

View Article and Find Full Text PDF

Background: Pulmonary ischemia-reperfusion injury (PIRI) is a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in acute lung injury (ALI), their effects on PIRI remain undefined. The present study aims to explore the underlying mechanism of small nucleolar RNA host gene 16 (SNHG16) in PIRI.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

St. Luke's Hospital, Shanghai, Shanghai, China.

Background: Recent studies have revealed that tRNA-derived fragments(tRFs)are closely associated with the immunoinflammatory process of brain injury after stroke.

Method: Firstly, 3 patients with WMI and the same number of healthy volunteers' peripheral blood in the control group were collected. EVS in the subjects' peripheral plasma was isolated and purified, and tRFs high-throughput sequencing was performed.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells (BMSCs) -derived extracellular vesicles (EVs), especially small EVs (sEVs), were vastly reported to enable multiple restorative effects on ischemic stroke, yet the protective mechanism of blood-brain barrier (BBB) has not been fully illustrated. In the present study, we investigated the therapeutic effects and mechanism of BMSCs-derived sEVs on BBB injury after ischemic stroke. In-vivo, administering sEVs to transient middle cerebral artery occlusion (tMCAo) mice mitigated the brain infarct volume, BBB permeability and neural apoptosis, and improved the cerebral blood flow perfusion and neurological function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!