Background: Ischemia-reperfusion (IR)-induced pain hypersensitivity shares features of neuroinflammation and neuropathic pain, accompanied by overproduction of interleukin (IL)-1β. Multiple microRNAs (miRs) are dysregulated during IR; among these miRs, miR-187-3p was recently reported to drive IL-1β release in retinal disease by activating members of the purinergic receptor family. However, the roles of miR-187-3p in the spinal cord are unclear. Thus, we investigated whether miR-187-3p is involved in the pathogenesis of IR-induced pain hypersensitivity by regulating the P2X7R signal and subsequent IL-1β release.
Methods: A mouse model was established by 5-min occlusion of the aortic arch. Pain hypersensitivity was assessed by the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). MiR-187-3p, P2X7R, cleaved caspase-1 and mature IL-1β expression levels were measured by RT-PCR and Western blotting. The in vivo roles of miR-187-3p, P2X7R and IL-1β were explored by intrathecal treatment with synthetic miRs, selective agonists and antagonists in separate experiments. Double immunofluorescence staining was performed to delineate the cellular distribution of P2X7R and IL-1β.
Results: IR-induced progressively decreased PWT and PWL values were closely related to decreases in miR-187-3p and increases in P2X7R expression levels over time. The functional miR-187-3p/P2X7R pair was preliminarily predicted by a bioinformatic database and confirmed in vivo by quantitative analysis, as mimic-187 greatly increased miR-187-3p but decreased P2X7R expression levels, whereas inhibitor-187 reversed these changes. In contrast, downregulating P2X7R by mimic-187 or A-438079 treatment comparably increased PWT and PWL values in IR-injured mice, while upregulating P2X7R by inhibitor-187 or BzATP treatment decreased PWT and PWL values in sham-operated mice. Moreover, P2X7R and IL-1β immunoreactivities in each group were changed in the same patterns. This finding was further supported by results showing that downregulating IL-1β by A-438079 and IL-1β-neutralizing antibody similarly decreased P2X7R, cleaved caspase-1 and mature IL-1β expression levels, whereas BzATP treatment increased these levels. Expectedly, mimic-187 treatment preserved PWT and PWL values, with decreased cleaved caspase-1 and mature IL-1β expression levels, whereas inhibitor-187 reversed these effects.
Conclusions: The spinal miR-187-3p/P2X7R pair functioned in a mouse IR model. Increasing miR-187-3p protected against pain hypersensitivity and mature IL-1β overproduction, partially through inhibiting P2X7R activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbi.2019.05.021 | DOI Listing |
J Patient Rep Outcomes
January 2025
IQVIA, Deerfield, IL, USA.
Purpose: Eosinophilic esophagitis (EoE), a chronic immune-mediated progressive disease, causes dysphagia, food impaction, abdominal pain, vomiting, and heartburn. EoE requires long-term monitoring and can affect quality of life owing to its symptoms and associated emotional and social burden. This study aimed to understand patients' experiences with EoE.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.
Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
Metabolic dysfunction has been demonstrated to contribute to diabetic pain, pointing towards a potential correlation between glucose metabolism and pain. To investigate the relationship between altered glucose metabolism and neuropathic pain, we compared samples from healthy subjects with those from intervertebral disc degeneration (IVDD) patients, utilizing data from two public datasets. This led to the identification of 412 differentially expressed genes (DEG), of which 234 were upregulated and 178 were downregulated.
View Article and Find Full Text PDFLife (Basel)
December 2024
College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.
Background: Fibromyalgia (FM) is characterized by chronic pain, significantly affecting the quality of life and functional capabilities of patients. In addition to pain, patients may experience insomnia, chronic fatigue, depression, anxiety, and headaches, further complicating their overall well-being. The Transient Receptor Potential Vanilloid 1 (TRPV1) receptor responds to various noxious stimuli and plays a key role in regulating pain sensitivity and inflammation.
View Article and Find Full Text PDFChildren (Basel)
December 2024
Hospital Pediatric Service University General "Los Arcos", 30739 San Javier, Spain.
Background: Recent studies indicate the need to examine how the gut microbiota-brain axis is implicated in pain, sensory reactivity and gastro-intestinal symptoms in autism spectrum disorder (ASD), but no scale exists that assesses all these constructs simultaneously.
Methods: We created a pool of 100 items based on the real-world experience of autistic people, and a multidisciplinary team and stakeholders reduced this pool to 50 items assessing pain, sensory hypersensitivity, and sensory hyposensitivity. In the present study, we present this new assessment tool, the Pain and Sensitivity Reactivity Scale (PSRS), and examine its psychometric properties in a sample of 270 individuals with autism spectrum disorder (ASD; mean age = 9.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!