Surface screening, molecular modeling and in vitro studies on the interactions of aflatoxin M1 and human enzymes acetyl- and butyrylcholinesterase.

Chem Biol Interact

Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMDQB) Military Institute of Engineering, Praça General Tibúrcio 80, Praia Vermelha, Rio de Janeiro, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho, 62, Hradec Kralove, Czech Republic.

Published: August 2019

Aflatoxin M1 (AFM1) is a mycotoxin produced by Aspergillus fungi and found in contaminated milk, breastfeed and dairy products, being highly toxic and carcinogenic to humans and other mammalian species. It is also produced in the human body as a metabolite of aflatoxin B1 (AFB1), one of the most toxic natural products known. Previous studies have shown that AFM1 is a potential inhibitor of the enzyme acetylcholinesterase (AChE), and therefore, a potential neurotoxic agent. In this work, surface screening (SS) and molecular dynamics (MD) simulation on human acetylcholinesterase AChE (HssAChE) were performed to corroborate literature data regarding preferential binding sites and type of inhibition. Also, an inedited theoretical study on the interactions of AFM1 with human butyrylcholinesterase (HssBChE) was performed. In vitro inhibition tests on both enzymes were done to support theoretical results. MD simulations suggested the catalytic anionic site of HssAChE as the preferential binding site for AFM1 and also that this metabolite is not a good inhibitor of HssBChE, corroborating previous studies. In vitro assays also corroborated molecular modeling studies by showing that AFM1 did not inhibit BChE and was able to inhibit AChE, although not as much as AFB1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2019.05.022DOI Listing

Publication Analysis

Top Keywords

surface screening
8
screening molecular
8
molecular modeling
8
previous studies
8
acetylcholinesterase ache
8
preferential binding
8
afm1
5
modeling vitro
4
studies
4
vitro studies
4

Similar Publications

Obstructive sleep apnea (OSA) is widespread, under-recognized, and under-treated, impacting the health and quality of life for millions. The current gold standard for sleep apnea testing is based on the in-lab sleep study, which is costly, cumbersome, not readily available and represents a well-known roadblock to managing this huge societal burden. Assessment of neuromuscular function involved in the upper airway using electromyography (EMG) has shown potential to characterize and diagnose sleep apnea, while the development of transmembranous electromyography (tmEMG), a painless surface probe, has made this opportunity practical and highly feasible.

View Article and Find Full Text PDF

Illudin S inhibits p53-Mdm2 interaction for anticancer efficacy in colorectal cancer.

Biomed Pharmacother

December 2024

Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

The impairment of the p53 pathway was once regarded as inadequately druggable due to the specificity of the p53 structure, its flat surface lacking an ideal drug-binding site, and the difficulty in reinstating p53 function. However, renewed interest in p53-based therapies has emerged, with promising approaches targeting p53 and ongoing clinical trials investigating p53-based treatments across various cancers. Despite significant progress in p53-targeted therapies, challenges persist in identifying effective therapeutic targets within the p53 pathway.

View Article and Find Full Text PDF

Background: Exercise is utilised by physiotherapists to prevent complications and improve overall function and quality of life post-burn. However, the effect of physiotherapist-led exercise has not been comprehensively reviewed. Consequently, this study aimed to investigate the effectiveness of physiotherapy exercises for persons' post-burn.

View Article and Find Full Text PDF

Regulatory T cells can suppress activated T cell proliferation by direct cell-contact, although the exact mechanism is poorly understood. Identification of a Treg-specific cell surface molecule that mediates suppression would offer a unique target for cancer immunotherapy to inhibit Treg immunosuppressive function or deplete Tregs in the tumor microenvironment. In this study, we explored a method of whole cell immunization using a Treg-like cell line (MoT cells) to generate and screen monoclonal antibodies that bound cell surface proteins in their native conformations and functionally reversed Treg-mediated suppression.

View Article and Find Full Text PDF

Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!