Received August 28, 2018; revised October 10, 2018; accepted November 6, 2018 The loss of apical-basal cell polarity is a necessary stage of the epithelial-mesenchymal transition (EMT). Polarized epithelial cells interact with the basement membrane (BM) and, in particular, with laminins, the major components of BM. Here, we examined the effect of the transition of colon cancer cells from 2D polarized state to non-polarized 3D state on the expression of EMT associated genes, as well as the role of laminins 332 and 411 (LM-332 and LM-411) in this process. The three studied cell lines, HT-29, HCT-116 and RKO, were found to have different sensitivity to cultivation conditions (2D to 3D changes) and to addition of laminins. One of the possible reasons for this maybe a difference in the initial 2D state of the cells. In particular, it was shown that the cell lines were at different EMT stages. HT-29 exhibited more epithelial expression profile, RKO was more mesenchymal, and HCT-116 was in an intermediate state. The most laminin-sensitive cell line was HCT-116. The magnitude and the specificity of cell response to LM-332 and LM-411 depended on the expression pattern of laminins' receptors. EMT gene expression profile was not substantially changed neither during the transition from 2D to 3D state, nor the presence of laminins' isoforms. However, we detected changes in expression of SNAI1 and ZEB1 genes encoding transcription factors that control the EMT process. Notably, in all three studied cell lines, the expression of SNAI1 was enhanced in response to laminin treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1134/S0026898419020113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!