Visceral leishmaniasis (VL), the most severe form of leishmaniasis, is caused by and . The infected dogs with canine visceral leishmaniasis (CVL) are important reservoirs for VL in humans, so the diagnosis, treatment and vaccination of the infected dogs will ultimately decrease the rate of human VL. Proteomics and immunoproteomics techniques have facilitated the introduction of novel drug, vaccine and diagnostic targets. Our immunoproteomic study was conducted to identify new immunoreactive proteins in amastigote form of . The strain of (MCAN/IR/07/Moheb-gh) was obtained from CVL-infected dogs. J774 macrophage cells were infected with the promastigotes. The infected macrophages were ruptured, and pure amastigotes were extracted from the macrophages. After protein extraction, two-dimensional gel electrophoresis was employed for protein separation followed by Western blotting. Western blotting was performed, using symptomatic and asymptomatic sera of the infected dogs with CVL. Thirteen repeatable immunoreactive spots were identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Some, including prohibitin, ornithine aminotransferase, annexin A4, and apolipoprotein A-I, have been critically involved in metabolic pathways, survival, and pathogenicity of parasites. Further investigations are required to confirm our identified immunoreactive proteins as a biomarker for CVL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586132PMC
http://dx.doi.org/10.1080/20477724.2019.1616952DOI Listing

Publication Analysis

Top Keywords

immunoreactive proteins
12
visceral leishmaniasis
12
infected dogs
12
canine visceral
8
western blotting
8
infected
6
dogs
5
immunoproteomic approach
4
approach identifying
4
immunoreactive
4

Similar Publications

Maternal dietary folate imbalance alters cerebellar astrocyte morphology and density in offspring.

IBRO Neurosci Rep

June 2025

Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.

Background: Maternal folate usage is essential for neurodevelopment, but its effects on cerebellar structure are unclear. Cerebellum undergoes a protracted period of development, making it sensitive to maternal nutritional imbalances. Astrocytes are necessary for cerebellar cortex structure and function.

View Article and Find Full Text PDF

Gliclazide (GLZ), an oral antihyperglycemic medication, has additional beneficial effects, such as anti-inflammatory and antioxidant properties, besides lowering blood glucose levels. In this study, the radio-protective effect of GLZ was evaluated against ionizing radiation (IR)-induced intestinal injury in mice. Eight groups of mice were randomized as follows: control, GLZ (5, 10, and 25 mg/kg), IR (6 Gy), and IR + GLZ (at 5, 10, and 25 mg/kg).

View Article and Find Full Text PDF

Spinal cord injury (SCI) causes abnormal liver function, the development of metabolic dysfunction-associated steatotic liver disease features and metabolic impairment in patients. Experimental models also demonstrate acute and chronic changes in the liver that may, in turn, affect SCI recovery. These changes have collectively been proposed to contribute to the development of a SCI-induced metabolic dysfunction-associated steatohepatitis (MASH).

View Article and Find Full Text PDF

The () gene family is of rising importance as their fusions are oncogenic, and specific target drugs are available to inhibit the chimera proteins. Pan-TRK antibody, which shows the overexpression of the genes, is a useful tool to detect tumors with or without gene alterations, due to high negative predictive value. Though it is well known that pan-TRK immunopositivity is usually not connected to fusion, the role of other possible genetic alterations is under-researched.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!