Nitric Oxide-Releasing Selective Estrogen Receptor Modulators: A Bifunctional Approach to Improve the Therapeutic Index.

J Med Chem

Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology , Helmholtz-Zentrum Dresden-Rossendorf , 01328 Dresden , Germany.

Published: July 2019

When using selective estrogen receptor modulators (SERMs) in cancer therapy, adverse effects such as endothelial dysfunction have to be considered. Estrogens and, consequently, SERMs regulate the synthesis of vasoactive nitric oxide (NO). We hypothesized that a bifunctional approach combining the antagonistic action of SERMs with a targeted NO release could diminish vascular side effects. We synthesized a series of NO-releasing SERMs (NO-SERMs) and the corresponding SERMs (after NO release) derived from a triaryl olefin lead. Compounds showed antagonistic activity for ERβ (IC(ERβ) = 0.2-2.7 μM), but no interaction with ERα. Growth of ERβ-positive breast cancer and melanoma cells was significantly decreased by treatment with SERM . This antiproliferative effect was diminished by the additional release of NO by the corresponding NO-SERM . Moreover, targeted release of NO by counteracted the antiproliferative effect of in normal vascular tissue cells. Summarizing, the therapeutic index of SERMs might be improved by this bifunctional approach.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.9b00171DOI Listing

Publication Analysis

Top Keywords

bifunctional approach
12
selective estrogen
8
estrogen receptor
8
receptor modulators
8
targeted release
8
serms
6
nitric oxide-releasing
4
oxide-releasing selective
4
modulators bifunctional
4
approach improve
4

Similar Publications

Squaramide-Catalyzed Asymmetric Mannich/Hemiketalization Retro-Henry Cascade Reaction of -Hydroxy-α-Aminosulfones with α-Nitroketones.

J Org Chem

January 2025

Key Laboratory of Medicinal Molecule Science & Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

A concise and efficient asymmetric Mannich/hemiketalization/retro-Henry cascade reaction between -hydroxy-α-aminosulfones and α-nitroketones was developed by utilizing a cinchona-derived bifunctional squaramide catalyst. This methodology provided access to β-nitro-substituted amino compounds with up to 95% yield and >99% ee. The practicality was demonstrated by scale-up and diverse derivatizations, including the synthesis of imidazolidinone and amino acid analogs.

View Article and Find Full Text PDF

The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.

View Article and Find Full Text PDF

The upsurging of cost-effective electrocatalysts through the operando electro-oxidation approaches holds great promise for the scalable production of green energy in the pursuit of energy sustainability. This work introduces an operando electro-oxidation reconstitution strategy in producing a smart electrocatalyst, cobalt "oxyhydroxide" derived from a newly designed 2D cobalt(II) metal-organic framework (-) directly grown on nickel foam (NF), . The electrocatalyst, , exhibits an outstanding overpotential of 76 mV for the hydrogen evolution reaction and 336 mV for the oxygen evolution reaction to achieve a current density of 10 mA/cm with remarkable Faradaic efficiencies of 97.

View Article and Find Full Text PDF

Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.

View Article and Find Full Text PDF

ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!