Electrokinetic-enhanced phytoremediation is an effective technology to decontaminate heavy metal contaminated soil. In this study, we examined the effects of electrokinetic treatments on plant uptake and bioaccumulation of U from soils with various U sources. Redistribution of uranium in soils as affected by planting and electrokinetic treatments was investigated. The soil was spiked with 100 mg kg UO, UO, and UO(NO). After sunflower and Indian mustard grew for 60 days, 1 voltage of direct-current was applied across the soils for 9 days. The results indicated that U uptake in both plants were significantly enhanced by electrokinetic treatments from soil with UO and UO(NO). U was more accumulated in roots than in shoots. Electrokinetic treatments were effective on lowering soil pH near the anode region. Overall, uranium (U) removal efficiency reached 3.4-4.3% from soils with UO and uranyl with both plants while that from soil with UO was 0.7-0.8%. Electrokinetic remediation treatment significantly enhanced the U removal efficiency (5-6%) from soils with UO and uranyl but it was 0.8-1.3% from soil with UO, indicating significant effects of U species and electrokinetic enhancement on U bioaccumulation. This study implies the potential feasibility of electrokinetic-enhanced phytoremediation of U soils with sunflower and Indian mustard.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2019.1612847DOI Listing

Publication Analysis

Top Keywords

electrokinetic treatments
16
electrokinetic-enhanced phytoremediation
12
sunflower indian
12
indian mustard
12
removal efficiency
8
soils uranyl
8
soil
7
electrokinetic
6
soils
6
phytoremediation uranium-contaminated
4

Similar Publications

This study evaluates the feasibility of converting Ca-montmorillonite into Na-montmorillonite through electroosmosis. Comprehensive analyses of current, pH, ζ-potential, and ethylene glycol expansion were conducted to investigate the macro- and microscale effects of electroosmosis. The results demonstrate that electroosmosis effectively reduces the swelling properties of montmorillonite.

View Article and Find Full Text PDF

Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.

View Article and Find Full Text PDF

Copper mining drives economic growth, with the global demand expected to reach 120 million metric tons annually by 2050. However, mining produces tailings containing heavy metals (HMs), which poses environmental risks. This study investigated the efficacy of phytoremediation (Phy) combined with electrokinetic treatment (EKT) to increase metal uptake in grown in tailings from the Metropolitan Region of Chile.

View Article and Find Full Text PDF

Microfluidic Technologies in Advancing Cancer Research.

Micromachines (Basel)

November 2024

Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.

This review explores the significant role of microfluidic technologies in advancing cancer research, focusing on the below key areas: droplet-based microfluidics, organ-on-chip systems, paper-based microfluidics, electrokinetic chips, and microfluidic chips for the study of immune response. Droplet-based microfluidics allows precise manipulation of cells and three-dimensional microtissues, enabling high-throughput experiments that reveal insights into cancer cell migration, invasion, and drug resistance. Organ-on-chip systems replicate human organs to assess drug efficacy and toxicity, particularly in the liver, heart, kidney, gut, lung, and brain.

View Article and Find Full Text PDF
Article Synopsis
  • Using alternating currents (AC) can effectively prevent the formation of mineral crystals on surfaces in contact with super-saturated fluids, such as heat exchangers and pipes.
  • The study demonstrates that periodic charging and discharging of the electrical double layer (EDL) on titanium sheets in super-saturated CaCO solutions inhibits both crystal nucleation and growth due to enhanced ion migration.
  • Operating at 4 V and frequencies between 0.1-10 Hz results in over 96% reduction in turbidity and over 92% reduction in calcium carbonate coverage, showcasing a promising method for controlling mineral scaling in various industrial applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!