The renewed interest in plasma desiccation patterns focuses on the potential of these patterns to be developed into a platform of low-cost and facile diagnostic methods to interpret health conditions of donors. During desiccation, several physical mechanisms are simultaneously acting on the plasma sessile drop; these include material redistribution, buildup/release of local internal stresses, protein aggregation, and salt crystallization. After desiccation, cracking patterns and "superimposed" crystal-like patterns are formed. It has been reported that these characteristic patterns were influenced by changes in plasma compositions caused by diseases. Potential applications of these patterns in diagnosis are, however, limited by our understanding of formation mechanisms of cracking patterns and chemical compositions of crystal-like patterns. To address these limitations, this research studied morphologies of desiccated plasma patterns and the influence of sodium chloride to the pattern formation at both macroscopic and microscopic levels. Experimental results show that cracking patterns of plasma from healthy adults form throughout the desiccated deposit; propagation directions of cracks are found to have correlations to local dominant stresses, which are governed by the development of gelation. Crystal-like patterns are located in the drop center, which are caused by the heterogeneous distribution of macromolecular proteins and sodium chloride within the plasma sessile drop during desiccation; these patterns are influenced by the concentration of sodium chloride. With the increase of the concentration of sodium chloride, the distribution area of crystal-like patterns enlarges; whereas, the number of cracks decreases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.9b00618 | DOI Listing |
Entropy (Basel)
January 2025
Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
Discrete statistical systems offer a significant advantage over systems defined in the continuum, since they allow for an easier enumeration of microstates. We introduce a lattice-gas model on the vertices of a polyhedron called a pentakis icosidodecahedron and draw its exact phase diagram by the Wang-Landau method. Using different values for the couplings between first-, second-, and third-neighbor particles, we explore various interaction patterns for the model, ranging from softly repulsive to Lennard-Jones-like and SALR.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
Phonon dynamics in organic-inorganic hybrid perovskites (OIHPs) exhibit inherent complexity driven by the intricate interactions between rotatable organic cations and dynamically disordered inorganic octahedra, mediated by hydrogen bonding. This study aims to address this complexity by investigating the thermal transport behavior of MAPbCl as a gateway to the OIHPs family. The results reveal that the ultralow thermal conductivity of MAPbCl arises from a synergistic interplay of exceptionally low phonon velocities, short phonon lifetimes, and phonon mean free paths approaching the Regel-Ioffe limit.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2024
College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China.
Identifying ideal thermoelectric materials presents a formidable challenge due to the intricate coupling relationship between thermal conductivity and power factor. Here, based on first-principles calculations, along with self-consistent phonon theory and the Boltzmann transport equation, we theoretically investigate the thermoelectric properties of alkali metal phosphides MP (M = Na and K). The evident 'avoided crossing' phenomenon indicates the phonon glass behavior of MP (M = Na and K).
View Article and Find Full Text PDFPhys Rev Lett
August 2024
Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux 5, L-4362 Esch/Alzette, Luxembourg.
Nanostructured ferroelectrics display exotic multidomain configurations resulting from the electrostatic and elastic boundary conditions they are subject to. While the ferroelectric domains appear frozen in experimental images, atomistic second-principles studies suggest that they may become spontaneously mobile upon heating, with the polar order melting in a liquidlike fashion. Here, we run molecular dynamics simulations of model systems (PbTiO_{3}/SrTiO_{3} superlattices) to study the unique features of this transformation.
View Article and Find Full Text PDFACS Sustain Chem Eng
June 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland.
Understanding the properties of polymers, such as their crystallinity, is crucial for their material performance and predicting their behavior during and after use, especially in the case of environmentally friendly (bio)degradable polymers, enabling optimized design. In this work, for the first time, a pressure-induced condis crystal-like mesophase of poly(butylene succinate--butylene adipate) (PBSA) is presented. The phase behavior of pressed films obtained from commercial PBSA with 25% butylene adipate units is investigated at various processing temperatures from room temperature to 100 °C, pressed at a pressure of the press jaws and at 2-5 t for 1-5 min.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!