A survey of municipal solid waste landfills in Beijing during 2009-2011.

Environ Sci Pollut Res Int

College of Environmental Science and Engineering, Beijing Engineering Research Center of Advanced Wastewater Treatment, Peking University, No 5, Yi Heyuan Road, Haidian District, Beijing, 100871, China.

Published: July 2019

AI Article Synopsis

  • The study focuses on municipal solid waste (MSW) treatment in Beijing, highlighting the challenges and methodologies used to understand landfill practices in the city.
  • Nearly 70% of MSW in Beijing is disposed of through landfilling, employing various technologies that consume significant energy and produce contaminants, with a particular emphasis on the use of HDPE geomembranes for landfill covers.
  • The research findings suggest that landfill cover methods significantly impact gas emissions, operational efficiency, and potential for energy generation, with a need for optimized disposal and recycling processes.

Article Abstract

The investigation of municipal solid waste (MSW) treatment in China is rare due to its sensitivity and difficulty in terms of access. We chose Beijing, the capital of China, as an example to identify the characteristics of MSW landfill treatments using a 2-month investigation with 20 participants. MSW landfill treatments account for nearly 70% of the annual MSW disposal in Beijing; the landfill processes are equipped with many kinds of technologies and consume a large amount of energy and produce a variety of contaminants. The cover method (the most obvious difference in landfill tamping) mainly includes high-density polyethylene (HDPE) geomembranes with loess and soil alone (i.e., loess or sandy soil). We investigated the actual conditions of landfills and collected data on leachate and landfill gas (LFG) emissions and energy consumption during 2009-2011. The results indicated that the cover method employed by landfills was related to treatment quantity, operation, and especially landfill location. Early large-scale landfills located in plains were covered with HDPE geomembranes, and newly built landfills covered with soil tended to be equipped with HDPE covers. Using HDPE cover also contributed greatly to LFG production due to its impermeability but had no remarkable effect on leachate yield reduction due to the dry climate in Beijing. The potential was reinforced by the potentials of decrement and reuse. The disposal method of LFG can be optimized, and the power generated by the LFG process can meet the landfill demand. The gray water recycled from the leachate could be used in the landfill process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-05326-4DOI Listing

Publication Analysis

Top Keywords

municipal solid
8
solid waste
8
landfill
8
msw landfill
8
landfill treatments
8
cover method
8
hdpe geomembranes
8
leachate landfill
8
landfills
5
survey municipal
4

Similar Publications

The present study investigated the genomic and functional potential of Burkholderia contaminans PB_AQ24, a bacterial strain isolated from the municipal solid waste dumpsite, for boosting the growth of Dendrocalamus strictus (Male bamboo) seedlings. The isolated strain exhibited high potency for metal solubilization and ACC (1-Aminocyclopropane-1-carboxylate) deaminase activity. Its genome harbored diverse genes responsible for nitrogen and phosphorus utilization (trpABCDES, iaaH, acdS, pstABCS, phoAUD, pqqABCDE, kdpABC, gln, and nirBD) and also an abundance of heavy metal tolerant genes (ftsH, hptX, iscX-fdx-hscAB-iscAUR, mgtA, corA, and copC).

View Article and Find Full Text PDF

The establishment of site-specific target limits (SSTLs) for old municipal solid waste (MSW) dumpsites is essential for defining remediation goals in a scientifically rigorous manner. However, a standardized framework for achieving this is currently lacking. This study proposes a comprehensive framework that integrates high-resolution site characterization (HRSC) tools, targeted sampling, and contaminant transport modeling to derive SSTLs.

View Article and Find Full Text PDF

Bioearth recovered from landfill mining of old dumpsites: a potential resource or reservoir of toxic pollutants.

Environ Sci Pollut Res Int

January 2025

Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, 600 025, India.

Landfill biomining is indeed a promising eco-friendly approach to sustainably manage and reclaim old dumpsites. Soil like fractions of < 8-10 mm size, also known as bioearth or good earth constitute a substantial part of the legacy waste. Detailed characterization is necessary to meet regulatory standards for the safe use of bioearth and minimize its environmental and human health impacts upon reuse.

View Article and Find Full Text PDF

Incidental iron oxide nanoclusters drive confined Fenton-like detoxification of solid wastes towards sustainable resource recovery.

Nat Commun

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.

The unique properties of nanomaterials offer vast opportunities to advance sustainable processes. Incidental nanoparticles (INPs) represent a significant part of nanomaterials, yet their potential for sustainable applications remains largely untapped. Herein, we developed a simple strategy to harness INPs to upgrade the waste-to-resource paradigm, significantly reducing the energy consumption and greenhouse gas emissions.

View Article and Find Full Text PDF

Hemodialysis for chronic kidney disease (CKD) relies on vascular access (VA) devices, such as arteriovenous fistulas (AVF), grafts (AVG), or catheters, to maintain blood flow. Nonetheless, unpredictable progressive vascular stenosis due to neointimal formation or complete occlusion from acute thrombosis remains the primary cause of mature VA failure. Despite emergent surgical intervention efforts, the lack of a reliable early detection tool significantly reduces patient outcomes and survival rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!