Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although machine learning models are increasingly being developed for clinical decision support for patients with type 2 diabetes, the adoption of these models into clinical practice remains limited. Currently, machine learning (ML) models are being constructed on local healthcare systems and are validated internally with no expectation that they would validate externally and thus, are rarely transferrable to a different healthcare system. In this work, we aim to demonstrate that (1) even a complex ML model built on a national cohort can be transferred to two local healthcare systems, (2) while a model constructed on a local healthcare system's cohort is difficult to transfer; (3) we examine the impact of training cohort size on the transferability; and (4) we discuss criteria for external validity. We built a model using our previously published Multi-Task Learning-based methodology on a national cohort extracted from OptumLabs® Data Warehouse and transferred the model to two local healthcare systems (i.e., University of Minnesota Medical Center and Mayo Clinic) for external evaluation. The model remained valid when applied to the local patient populations and performed as well as locally constructed models (concordance: .73-.92), demonstrating transferability. The performance of the locally constructed models reduced substantially when applied to each other's healthcare system (concordance: .62-.90). We believe that our modeling approach, in which a model is learned from a national cohort and is externally validated, produces a transferable model, allowing patients at smaller healthcare systems to benefit from precision medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10916-019-1321-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!