Objective: To design and validate a novel mixed reality head-mounted display for intraoperative surgical navigation.
Design: A mixed reality navigation for laparoscopic surgery (MRNLS) system using a head mounted display (HMD) was developed to integrate the displays from a laparoscope, navigation system, and diagnostic imaging to provide context-specific information to the surgeon. Further, an immersive auditory feedback was also provided to the user. Sixteen surgeons were recruited to quantify the differential improvement in performance based on the mode of guidance provided to the user (laparoscopic navigation with CT guidance (LN-CT) versus mixed reality navigation for laparoscopic surgery (MRNLS)). The users performed three tasks: (1) standard peg transfer, (2) radiolabeled peg identification and transfer, and (3) radiolabeled peg identification and transfer through sensitive wire structures.
Results: For the more complex task of peg identification and transfer, significant improvements were observed in time to completion, kinematics such as mean velocity, and task load index subscales of mental demand and effort when using the MRNLS (p < 0.05) compared to the current standard of LN-CT. For the final task of peg identification and transfer through sensitive structures, time taken to complete the task and frustration were significantly lower for MRNLS compared to the LN-CT approach.
Conclusions: A novel mixed reality navigation for laparoscopic surgery (MRNLS) has been designed and validated. The ergonomics of laparoscopic procedures could be improved while minimizing the necessity of additional monitors in the operating room.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6512867 | PMC |
http://dx.doi.org/10.1007/978-3-030-00937-3_9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!