Novel anthraquinone compounds that induce ER stress and paraptosis-like cell death were designed and synthesized. Compound is the first organic micromolecule to kill tumor cells by only paraptosis, and its mechanism of action has been further explored. Paraptosis does not appear to involve either phosphatidylserine translocation associated with apoptosis or cell cycle arrest. The bisbenzyloxy and -(2-hydroxyethyl)formamide structures may be two critical pharmacophores for paraptosis. Bisbenzyloxy can induce ER stress, and the -(2-hydroxyethyl)formamide structure can increase the ratio of LC3II/I and cytoplasmic vacuolization and facilitates paraptosis. Some antitumor drugs fail to eradicate malignant cell lines with impaired apoptotic pathways; paraptosis may be a route to kill such cells and provides a new potential strategy for cancer chemotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511958PMC
http://dx.doi.org/10.1021/acsmedchemlett.8b00624DOI Listing

Publication Analysis

Top Keywords

novel anthraquinone
8
anthraquinone compounds
8
compounds induce
8
cell death
8
induce stress
8
paraptosis
6
induce cancer
4
cell
4
cancer cell
4
death paraptosis
4

Similar Publications

Hydrogen peroxide (HO) electrosynthesis via the 2e oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient HO production at high current densities. In this work, mesoporous B-doped carbons with novel curved BC active sites, synthesized via a carbon dioxide (CO) reduction using a pore-former agent, to simultaneously achieve excellent 2e ORR activity and improved mass transfer properties are introduced.

View Article and Find Full Text PDF

The electrocatalytic conversion of oxygen to hydrogen peroxide offers a promising pathway for sustainable energy production. However, the development of catalysts that are highly active, stable, and cost-effective for hydrogen peroxide synthesis remains a significant challenge. In this study, a novel polyacid-based metal-organic coordination compound (Cu-PW) was synthesized using a hydrothermal approach.

View Article and Find Full Text PDF

A novel diphenyl-anthraquinone compound, cassuquinone A, was isolated from the rhizomes of Zingiber cassumunar. Structural elucidation was accomplished using detailed NMR and HRMS-ESI  techniques, revealing a symmetrical anthraquinone core with methoxylated aromatic rings. Cassuquinone A exhibited potent α-glucosidase inhibitory activity with an IC₅₀ of 11.

View Article and Find Full Text PDF

Some specific anthraquinone derivatives (AQs) are known to be used widely as effective chemotherapeutic agents in the treatment of cancer. However, their fundamental shortcoming is the high rate of cardiotoxicity observed in treated patients, which is thought to be caused by the increase in production of reactive oxygen species (ROS) catalyzed by iron and copper. The development of improved AQs and other anticancer drugs with enhanced efficacy but reduced toxicity remains a high priority.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!