Pacing behaviour, the most frequent stereotypic behaviour displayed by laboratory rhesus macaques (Macaca mulatta) is often used as an indicator of stress. In this study, we investigated how reliable this welfare indicator is at detecting acute stress by testing the reaction of macaques to the stressful event of being exposed to an agonistic interaction between conspecifics housed in the same room but in a different cage. Pacing, agitated locomotion, and stress-related displacement behaviours were quantified before, during and after agonistic interaction exposure, based on video recordings of 13 socially-housed macaques in their home cage. Displacement behaviours increased after agonistic interaction exposure, confirming that the events were experienced as stressful by the focal individuals. The occurrence of pacing did not increase during or after the agonistic interactions. Instead, agitated locomotion increased during the agonistic interactions. These results suggest either, that pacing as an indicator of acute stress is prone to false negative results, increasing in some stressful situations but not others, or that agitated locomotion has been mistaken for pacing in previous studies and that pacing is in fact unrelated to current acute stress. Both interpretations lead to the conclusion that pacing is unreliable as an indicator of acute stress in laboratory rhesus macaques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522602 | PMC |
http://dx.doi.org/10.1038/s41598-019-43695-5 | DOI Listing |
Circ Res
January 2025
Department of Integrative Physiology, University of Colorado Boulder (S.D., K.O.M., K.R.L., K.H.A., D.H.C., K.A.F., D.R.S., M.J.R.).
Background: Postmenopausal women (PMW) who complete menopause at a late age (55+ years) have lower cardiovascular disease risk than PMW who complete menopause at a normal age (45-54 years). However, the influence of late-onset menopause on vascular endothelial dysfunction is unknown. Moreover, the mechanisms by which a later age at menopause may modulate endothelial function remain to be determined.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Preventive Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, 12372, Saudi Arabia.
Introduction And Aim: Periodontal disease, initiated by dental biofilm and influenced by various local and systemic factors, includes stress as a potential contributor to its progression. Despite associations with severe forms like acute necrotizing ulcerative gingivitis, a comprehensive large-sample study linking stress to periodontal disease is lacking. This study aims to investigate the relationship between mental health and periodontal disease.
View Article and Find Full Text PDFiScience
January 2025
Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA.
How cells respond to dynamic environmental changes is crucial for understanding fundamental biological processes and cell physiology. In this study, we developed an experimental and quantitative analytical framework to explore how dynamic stress gradients that change over time regulate cellular volume, signaling activation, and growth phenotypes. Our findings reveal that gradual stress conditions substantially enhance cell growth compared to conventional acute stress.
View Article and Find Full Text PDFNanotoxicology
January 2025
Department of Biotechnology, Sathyabama Institute of Science and technology, Chennai, Tamil Nadu, India.
The widespread utilization of titanium oxide nanoparticles (TiONPs) in various industrial applications has raised concerns about their potential ecological risks in marine environment. Assessing the toxicity of TiONPs on primary producers is essential to understand their impact on marine ecosystem. This study investigates the acute toxicity effect of TiONPs on COR-A3 cells, focusing on structural and physiological changes that can compromise algal viability and ecological function.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Department of Intensive Care Medicine, No. 971st Hospital of the People's Liberation Army Navy, Qingdao, Shandong Province, PR China.
Background: Ursodeoxycholic acid (UDCA), traditionally recognized for its hepatoprotective effects, has also shown potential in protecting kidney injury. This study aimed to evaluate the protective effects of UDCA against sepsis-induced acute kidney injury (AKI) and to elucidate the underlying mechanisms.
Methods: Sixty male C57BL/6 N mice were utilized to establish a sepsis-induced AKI model through intravenous injection of lipopolysaccharides (LPS, 10 mg/kg).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!