AI Article Synopsis

  • TGF-β is crucial in the progression of podocyte diseases, but how it signals in these cells isn't well understood.
  • Researchers used mice without Myo1c in podocytes and found they were resistant to renal injuries caused by substances like Adriamycin, indicating Myo1c's importance in TGF-β signaling.
  • The study revealed that nuclear Myo1c regulates TGF-β pathways and affects the expression of critical genes like GDF-15, linking Myo1c to podocyte injury and suggesting that targeting this regulation could help treat related kidney diseases.

Article Abstract

Transforming growth factor-β (TGF-β) is known to play a critical role in the pathogenesis of many progressive podocyte diseases. However, the molecular mechanisms regulating TGF-β signaling in podocytes remain unclear. Using a podocyte-specific myosin (Myo)1c knockout, we demonstrate whether Myo1c is critical for TGF-β-signaling in podocyte disease pathogenesis. Specifically, podocyte-specific Myo1c knockout mice were resistant to fibrotic injury induced by Adriamycin or nephrotoxic serum. Further, loss of Myo1c also protected from injury in the TGF-β-dependent unilateral ureteral obstruction mouse model of renal interstitial fibrosis. Mechanistic analyses showed that loss of Myo1c significantly blunted TGF-β signaling through downregulation of canonical and non-canonical TGF-β pathways. Interestingly, nuclear rather than the cytoplasmic Myo1c was found to play a central role in controlling TGF-β signaling through transcriptional regulation. Differential expression analysis of nuclear Myo1c-associated gene promoters showed that nuclear Myo1c targeted the TGF-β responsive gene growth differentiation factor (GDF)-15 and directly bound to the GDF-15 promoter. Importantly, GDF15 was found to be involved in podocyte pathogenesis, where GDF15 was upregulated in glomeruli of patients with focal segmental glomerulosclerosis. Thus, Myo1c-mediated regulation of TGF-β-responsive genes is central to the pathogenesis of podocyte injury. Hence, inhibiting this process may have clinical application in treating podocytopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589397PMC
http://dx.doi.org/10.1016/j.kint.2019.02.014DOI Listing

Publication Analysis

Top Keywords

tgf-β signaling
12
myo1c
8
transforming growth
8
myo1c knockout
8
loss myo1c
8
tgf-β
6
motor protein
4
protein myo1c
4
myo1c regulates
4
regulates transforming
4

Similar Publications

Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.

Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.

View Article and Find Full Text PDF

Background: PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP.

Methods: We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1, PSEN2, and APP and mechanistically characterized by integrating RNA-seq and ATAC-seq.

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!