The aim of this study was to develop an online collaborative map to enable researchers to locate, explore, and share cancer data.This 2-scale (global and country-level) cancer map adopts a database-driven model, which was implemented using the Google Map Application Programming Interface (API) and asynchronous JavaScript and XML (AJAX) technology. Seven visualization techniques were used to present data. Data on worldwide cancer mortality between 1950 and 2013 were taken from the International Agency for Research on Cancer (IARC) database. Incidence data were from the IARC CI5plus database. Survival data were from the IARC SURVCAN study. Prevalence data between 1990 and 2017 were from the Institute for Health Metrics and Evaluation's (IHME) catalog while demographic data were from the World Bank Data Catalog. Cancer data for Taiwan between 1991 and 2016 were obtained from the Department of Health and Welfare. This study used visualization techniques that included: a choropleth map to display the prevalence of cancer; a tornado diagram to show the age-standardized mortality rates of all cancers among men and women in 2013; a treemap to show a ranking of cancer mortality data; a sunburst chart to show mortality rates of all cancers by gender; a line chart to show mortality trends for all cancers; a bar chart to show mortality and incidence rates and a heatmap to show variations in cancer across different countries.The world cancer map generated by this study can be accessed at http://worldmap.csmu-liawyp.tw. Country-level mortality data are presented as crude and age-standardized rates.We used visualization methodologies and constructed an easily maintainable web-based user interface with cancer data from administrative regions in 150 countries. This serves as a platform that allows researchers to manage and disseminate cancer data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531084 | PMC |
http://dx.doi.org/10.1097/MD.0000000000015521 | DOI Listing |
Jpn J Clin Oncol
January 2025
Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori, Miyagi 981-1293, Japan.
A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.
View Article and Find Full Text PDFEndocrine
January 2025
Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, Florence, Italy.
Purpose: To compare functional deficits associated to surgery with those caused by the growth of the head and neck paragangliomas (HNPGLs).
Methods: 72 patients with HNPGLs were included. Patients were divided in group A (49 patients undergoing surgery) and group B (23 patients following a wait and see approach).
Int J Radiat Oncol Biol Phys
January 2025
Providence Swedish Cancer Institute, Seattle, Washington.
Purpose: Standard therapy for breast cancer after breast-conserving surgery is radiation therapy (RT) plus hormone therapy (HT). For patients with a low-risk of recurrence, there is an interest in deescalating therapy.
Methods And Materials: A retrospective study was carried out for patients treated at the Swedish Cancer Institute from 2000 to 2015, aged 70 years or older, with pT1N0 or pT1NX estrogen receptor-positive and ERBB2-negative unifocal breast cancer without positive surgical margins, high nuclear grade, or lymphovascular invasion.
J Nutr Educ Behav
January 2025
Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China. Electronic address:
Objective: To explore the knowledge-action gap regarding health behaviors and their influencing factors among patients with metabolic dysfunction-associated fatty liver disease (MAFLD), using the Health Belief Model as a theoretical framework.
Design: A qualitative approach was adopted, involving semistructured interviews with individuals with MAFLD.
Setting: Participants were recruited from a community hospital and a tertiary hospital in Nanjing, China, between July and October 2022.
Cancer Biol Ther
December 2025
Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!